These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 8585145)

  • 1. Redistribution of vertical ground reaction force in dogs with experimentally induced chronic hindlimb lameness.
    Rumph PF; Kincaid SA; Visco DM; Baird DK; Kammermann JR; West MS
    Vet Surg; 1995; 24(5):384-9. PubMed ID: 8585145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensatory load redistribution of horses with induced weightbearing hindlimb lameness trotting on a treadmill.
    Weishaupt MA; Wiestner T; Hogg HP; Jordan P; Auer JA
    Equine Vet J; 2004 Dec; 36(8):727-33. PubMed ID: 15656505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load redistribution in walking and trotting Beagles with induced forelimb lameness.
    Abdelhadi J; Wefstaedt P; Galindo-Zamora V; Anders A; Nolte I; Schilling N
    Am J Vet Res; 2013 Jan; 74(1):34-9. PubMed ID: 23270343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term temporal evaluation of ground reaction forces during development of experimentally induced osteoarthritis in dogs.
    Budsberg SC
    Am J Vet Res; 2001 Aug; 62(8):1207-11. PubMed ID: 11497439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory load redistribution in walking and trotting dogs with hind limb lameness.
    Fischer S; Anders A; Nolte I; Schilling N
    Vet J; 2013 Sep; 197(3):746-52. PubMed ID: 23683534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensatory load redistribution in naturally occurring osteoarthritis of the elbow joint and induced weight-bearing lameness of the forelimbs compared with clinically sound dogs.
    Bockstahler BA; Vobornik A; Müller M; Peham C
    Vet J; 2009 May; 180(2):202-12. PubMed ID: 18406183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of postoperative rehabilitation on limb function after cranial cruciate ligament repair in dogs.
    Marsolais GS; Dvorak G; Conzemius MG
    J Am Vet Med Assoc; 2002 May; 220(9):1325-30. PubMed ID: 11991410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of asymmetry indices of ground reaction forces for diagnosis of hind limb lameness in dogs.
    Fanchon L; Grandjean D
    Am J Vet Res; 2007 Oct; 68(10):1089-94. PubMed ID: 17916016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Results of arthroscopic versus open arthrotomy for surgical management of cranial cruciate ligament deficiency in dogs.
    Hoelzler MG; Millis DL; Francis DA; Weigel JP
    Vet Surg; 2004; 33(2):146-53. PubMed ID: 15027976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and optimization of force platform gait analysis in Labradors with cranial cruciate disease evaluated at a walking gait.
    Evans R; Horstman C; Conzemius M
    Vet Surg; 2005; 34(5):445-9. PubMed ID: 16266335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term functional outcome after surgical repair of cranial cruciate ligament disease in dogs.
    Mölsä SH; Hyytiäinen HK; Hielm-Björkman AK; Laitinen-Vapaavuori OM
    BMC Vet Res; 2014 Nov; 10():266. PubMed ID: 25407015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of changes in vertical ground reaction forces as indicators of meniscal damage after transection of the cranial cruciate ligament in dogs.
    Trumble TN; Billinghurst RC; Bendele AM; McIlwraith CW
    Am J Vet Res; 2005 Jan; 66(1):156-63. PubMed ID: 15691052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical ground reaction force distribution during experimentally induced acute synovitis in dogs.
    Rumph PF; Kincaid SA; Baird DK; Kammermann JR; Visco DM; Goetze LF
    Am J Vet Res; 1993 Mar; 54(3):365-9. PubMed ID: 8498738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory Changes in Ground Reaction Forces in Small and Large Breed Dogs with Unilateral Hindlimb Lameness in Comparison to Healthy Dogs.
    Wagmeister P; Steigmeier-Raith S; Reese S; Meyer-Lindenberg A
    Vet Comp Orthop Traumatol; 2022 Mar; 35(2):105-111. PubMed ID: 34666414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of kinematic variables in defining lameness caused by naturally occurring rupture of the cranial cruciate ligament in dogs.
    Sanchez-Bustinduy M; de Medeiros MA; Radke H; Langley-Hobbs S; McKinley T; Jeffery N
    Vet Surg; 2010 Jun; 39(4):523-30. PubMed ID: 20345532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force plate analyses before and after stabilization of canine stifles for cruciate injury.
    Budsberg SC; Verstraete MC; Soutas-Little RW; Flo GL; Probst CW
    Am J Vet Res; 1988 Sep; 49(9):1522-4. PubMed ID: 3223659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of force-plate analysis of gait to compare two surgical techniques for treatment of cranial cruciate ligament rupture in dogs.
    Jevens DJ; DeCamp CE; Hauptman J; Braden TD; Richter M; Robinson R
    Am J Vet Res; 1996 Mar; 57(3):389-93. PubMed ID: 8669774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic gait analysis assessment of meloxicam efficacy in a sodium urate-induced synovitis model in dogs.
    Cross AR; Budsberg SC; Keefe TJ
    Am J Vet Res; 1997 Jun; 58(6):626-31. PubMed ID: 9185970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse dynamics analysis of the pelvic limbs in Labrador Retrievers with and without cranial cruciate ligament disease.
    Ragetly CA; Griffon DJ; Mostafa AA; Thomas JE; Hsiao-Wecksler ET
    Vet Surg; 2010 Jun; 39(4):513-22. PubMed ID: 20345530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetic changes of canine's hindlimbs after fixation of one forelimb].
    Li H; Zhang C; Bai Y; Zhou J; Zeng B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):66-9. PubMed ID: 18361242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.