These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8585442)

  • 1. The role of the sarcolemma action potential in fatigue.
    Fuglevand AJ
    Adv Exp Med Biol; 1995; 384():101-8. PubMed ID: 8585442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
    Cairns SP; Leader JP; Loiselle DS; Higgins A; Lin W; Renaud JM
    J Appl Physiol (1985); 2015 Mar; 118(6):662-74. PubMed ID: 25571990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical characteristics of human ankle dorsi- and plantar-flexor muscles. Comparative responses during fatiguing stimulation and recovery.
    Galea V
    Eur J Appl Physiol; 2001 Jul; 85(1-2):130-40. PubMed ID: 11513306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle.
    Cairns SP; Taberner AJ; Loiselle DS
    J Appl Physiol (1985); 2009 Jan; 106(1):101-12. PubMed ID: 18948444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue from high- and low-frequency muscle stimulation: role of sarcolemma action potentials.
    Metzger JM; Fitts RH
    Exp Neurol; 1986 Aug; 93(2):320-33. PubMed ID: 3732473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue-induced changes in muscle fiber action potentials estimated by wavelet analysis.
    Vukova T; Vydevska-Chichova M; Radicheva N
    J Electromyogr Kinesiol; 2008 Jun; 18(3):397-409. PubMed ID: 17287133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sarcolemmal excitability as investigated with M-waves after eccentric exercise in humans.
    Piitulainen H; Komi P; Linnamo V; Avela J
    J Electromyogr Kinesiol; 2008 Aug; 18(4):672-81. PubMed ID: 17331740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of sarcolemma action potentials and excitability in muscle fatigue.
    Balog EM; Thompson LV; Fitts RH
    J Appl Physiol (1985); 1994 May; 76(5):2157-62. PubMed ID: 8063681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Events of the excitation-contraction-relaxation (E-C-R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue.
    Stephenson DG; Lamb GD; Stephenson GM
    Acta Physiol Scand; 1998 Mar; 162(3):229-45. PubMed ID: 9578368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of motor unit discharge rate and H-reflex amplitude during submaximal fatigue of the human soleus muscle.
    Kuchinad RA; Ivanova TD; Garland SJ
    Exp Brain Res; 2004 Oct; 158(3):345-55. PubMed ID: 15146306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand.
    Fuglevand AJ; Macefield VG; Bigland-Ritchie B
    J Neurophysiol; 1999 Apr; 81(4):1718-29. PubMed ID: 10200207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity.
    Vydevska-Chichova M; Mileva K; Radicheva N
    J Electromyogr Kinesiol; 2007 Apr; 17(2):131-41. PubMed ID: 16524744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue properties of human thenar motor units paralysed by chronic spinal cord injury.
    Klein CS; Häger-Ross CK; Thomas CK
    J Physiol; 2006 May; 573(Pt 1):161-71. PubMed ID: 16513673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency fatigue in rat skeletal muscle: role of extracellular ion concentrations.
    Cairns SP; Dulhunty AF
    Muscle Nerve; 1995 Aug; 18(8):890-8. PubMed ID: 7630351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle.
    Pedersen TH; L-H Huang C; Fraser JA
    J Gen Physiol; 2011 Jul; 138(1):73-93. PubMed ID: 21670208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of fatigue duration and muscle type on voluntary and evoked contractile properties.
    Behm DG; St-Pierre DM
    J Appl Physiol (1985); 1997 May; 82(5):1654-61. PubMed ID: 9134916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contralateral muscle fatigue in human quadriceps muscle: evidence for a centrally mediated fatigue response and cross-over effect.
    Rattey J; Martin PG; Kay D; Cannon J; Marino FE
    Pflugers Arch; 2006 May; 452(2):199-207. PubMed ID: 16365782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part I: What do the intramuscular spike amplitude-frequency histograms reflect?
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):26-34. PubMed ID: 16963279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles.
    Hamada T; Sale DG; MacDougall JD; Tarnopolsky MA
    Acta Physiol Scand; 2003 Jun; 178(2):165-73. PubMed ID: 12780391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.