BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8586060)

  • 1. A simple and rapid technique for postelectrophoretic detection of proteases using azocasein.
    Vázquez Peyronel D; Cantera AM
    Electrophoresis; 1995 Oct; 16(10):1894-7. PubMed ID: 8586060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for the detection of proteolytic activity in Pseudomonas lundensis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Lundy FT; Magee AC; Blair IS; McDowell DA
    Electrophoresis; 1995 Jan; 16(1):43-5. PubMed ID: 7737090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteinase activities in total extracts and in medium conditioned by Acanthamoeba polyphaga trophozoites.
    Alfieri SC; Correia CE; Motegi SA; Pral EM
    J Parasitol; 2000 Apr; 86(2):220-7. PubMed ID: 10780536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromogenic substrate autography: a method for detection, characterization, and quantitative measurement of serine proteases after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing in polyacrylamide gels.
    Wagner OF; Bergmann I; Binder BR
    Anal Biochem; 1985 Nov; 151(1):7-12. PubMed ID: 3911825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypsin activity assay in substrate-specific one- and two-dimensional gels: a powerful method to separate and characterize novel proteases in active form in biological samples.
    Zhao Z; Russell PJ
    Electrophoresis; 2003 Sep; 24(18):3284-8. PubMed ID: 14518058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zymographic techniques for detection and characterization of microbial proteases.
    Lantz MS; Ciborowski P
    Methods Enzymol; 1994; 235():563-94. PubMed ID: 8057927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of protease activities using specific aminoacyl or peptidyl p-nitroanilides after sodium dodecyl sulfate - polyacrylamide gel electrophoresis and its applications.
    Hou WC; Chen HJ; Chen TE; Lin YH
    Electrophoresis; 1999 Mar; 20(3):486-90. PubMed ID: 10217159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of proteases in polyacrylamide gels containing covalently bound substrates.
    Kelleher PJ; Juliano RL
    Anal Biochem; 1984 Feb; 136(2):470-5. PubMed ID: 6372542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive reverse staining of bacterial lipopolysaccharides on polyacrylamide gels by using zinc and imidazole salts.
    Hardy E; Pupo E; Castellanos-Serra L; Reyes J; Fernández-Patrón C
    Anal Biochem; 1997 Jan; 244(1):28-32. PubMed ID: 9025903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assay for matrix metalloproteinases and other proteases acting on proteoglycans, casein, or gelatin.
    Manicourt DH; Lefebvre V
    Anal Biochem; 1993 Dec; 215(2):171-9. PubMed ID: 8122775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand western blotting for specific detection of active forms of proteases.
    Kido T; Yook HY; Ueda K
    Clin Chim Acta; 1995 Jun; 237(1-2):31-41. PubMed ID: 7664477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of protease inhibitors using substrate-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Hanspal JS; Bushell GR; Ghosh P
    Anal Biochem; 1983 Jul; 132(2):288-93. PubMed ID: 6353999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of proteolytic activity by fluorescent zymogram in-gel assays.
    Yasothornsrikul S; Hook VY
    Biotechniques; 2000 Jun; 28(6):1166-8, 1170, 1172-3. PubMed ID: 10868282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-layer fluorescent zymography for processing protease detection.
    Katunuma N; Le QT; Miyauchi R; Hirose S
    Anal Biochem; 2005 Dec; 347(2):208-12. PubMed ID: 16289080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic analysis of plant cysteine and serine proteinases using gelatin-containing polyacrylamide gels and class-specific proteinase inhibitors.
    Michaud D; Faye L; Yelle S
    Electrophoresis; 1993; 14(1-2):94-8. PubMed ID: 8462522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of a trypsin-like serine protease and its endogenous inhibitor in hake skeletal muscle.
    Martone CB; Busconi L; Folco EJ; Sánchez JJ
    Arch Biochem Biophys; 1991 Aug; 289(1):1-5. PubMed ID: 1898057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of the neutral proteinases from fungi and actinomycetes using polyacrylamide gel electrophoresis.
    Ansari H; Duncan D; Stevens L
    Microbios; 1984; 40(161-162):173-9. PubMed ID: 6384734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digestive proteases during development of larvae of red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae).
    Alarcón FJ; Martínez TF; Barranco P; Cabello T; Díaz M; Moyano FJ
    Insect Biochem Mol Biol; 2002 Mar; 32(3):265-74. PubMed ID: 11804798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of trypsin- and chymotrypsin-like proteases using p-nitroanilide substrates after sodium dodecyl sulphate polyacrylamide gel electrophoresis.
    Koivunen E
    J Chromatogr; 1989 May; 470(2):401-6. PubMed ID: 2768384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.
    Yasumitsu H
    Methods Mol Biol; 2017; 1626():13-24. PubMed ID: 28608196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.