These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 8586605)
1. Efficacy of laidlomycin propionate to reduce ruminal acidosis in cattle. Bauer ML; Herold DW; Britton RA; Stock RA; Klopfenstein TJ; Yates DA J Anim Sci; 1995 Nov; 73(11):3445-54. PubMed ID: 8586605 [TBL] [Abstract][Full Text] [Related]
2. Performance of feedlot steers fed diets containing laidlomycin propionate or monensin plus tylosin, and effects of laidlomycin propionate concentration on intake patterns and ruminal fermentation in beef steers during adaptation to a high-concentrate diet. Galyean ML; Malcolm KJ; Duff GC J Anim Sci; 1992 Oct; 70(10):2950-8. PubMed ID: 1429270 [TBL] [Abstract][Full Text] [Related]
3. Influence of dietary magnesium level on growth-performance and metabolic responses of Holstein steers to laidlomycin propionate. Ramirez JE; Alvarez EG; MontaƱo M; Shen Y; Zinn RA J Anim Sci; 1998 Jul; 76(7):1753-9. PubMed ID: 9690629 [TBL] [Abstract][Full Text] [Related]
4. Influence of dietary magnesium level on metabolic and growth-performance responses of feedlot cattle to laidlomycin propionate. Zinn RA; Shen Y; Adam CF; Tamayo M; Rosalez J J Anim Sci; 1996 Jul; 74(7):1462-9. PubMed ID: 8818789 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of laidlomycin propionate in low-protein diets fed to growing beef steers: effects on steer performance and ruminal nitrogen metabolism. Bohnert DW; Harmon DL; Dawson KA; Larson BT; Richards CJ; Streeter MN J Anim Sci; 2000 Jan; 78(1):173-80. PubMed ID: 10682819 [TBL] [Abstract][Full Text] [Related]
6. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers. Gozho GN; Krause DO; Plaizier JC J Dairy Sci; 2006 Nov; 89(11):4404-13. PubMed ID: 17033028 [TBL] [Abstract][Full Text] [Related]
7. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle. Pourazad P; Khiaosa-Ard R; Qumar M; Wetzels SU; Klevenhusen F; Metzler-Zebeli BU; Zebeli Q J Anim Sci; 2016 Feb; 94(2):726-38. PubMed ID: 27065143 [TBL] [Abstract][Full Text] [Related]
8. Feeding wet corn gluten feed to reduce subacute acidosis in cattle. Krehbiel CR; Stock RA; Herold DW; Shain DH; Ham GA; Carulla JE J Anim Sci; 1995 Oct; 73(10):2931-9. PubMed ID: 8617663 [TBL] [Abstract][Full Text] [Related]
9. Effects of laidlomycin propionate and monensin on the in vitro mixed ruminal microorganism fermentation. Domescik EJ; Martin SA J Anim Sci; 1999 Aug; 77(8):2305-12. PubMed ID: 10462011 [TBL] [Abstract][Full Text] [Related]
10. Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. Bevans DW; Beauchemin KA; Schwartzkopf-Genswein KS; McKinnon JJ; McAllister TA J Anim Sci; 2005 May; 83(5):1116-32. PubMed ID: 15827257 [TBL] [Abstract][Full Text] [Related]
11. Impact of hard vs. soft wheat and monensin level on rumen acidosis in feedlot heifers. Yang WZ; Xu L; Zhao YL; Chen LY; McAllister TA J Anim Sci; 2014 Nov; 92(11):5088-98. PubMed ID: 25253812 [TBL] [Abstract][Full Text] [Related]
12. Monensin and a blend of castor oil and cashew nut shell liquid used in a high-concentrate diet abruptly fed to Nellore cattle. Zotti CA; Silva AP; Carvalho R; Marino CT; Rodrigues PHM; Silva LFP; McAllister TA; Leme PR J Anim Sci; 2017 Sep; 95(9):4124-4138. PubMed ID: 28992030 [TBL] [Abstract][Full Text] [Related]
13. Severity of ruminal acidosis in primiparous holstein cows during the periparturient period. Penner GB; Beauchemin KA; Mutsvangwa T J Dairy Sci; 2007 Jan; 90(1):365-75. PubMed ID: 17183105 [TBL] [Abstract][Full Text] [Related]
14. Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle. Beauchemin KA; Yang WZ; Morgavi DP; Ghorbani GR; Kautz W; Leedle JA J Anim Sci; 2003 Jun; 81(6):1628-40. PubMed ID: 12817511 [TBL] [Abstract][Full Text] [Related]
15. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet. Kenney NM; Vanzant ES; Harmon DL; McLeod KR J Anim Sci; 2015 May; 93(5):2336-48. PubMed ID: 26020329 [TBL] [Abstract][Full Text] [Related]
16. Effects of corn silage particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed preference, and milk fat profile of dairy cattle. Kmicikewycz AD; Harvatine KJ; Heinrichs AJ J Dairy Sci; 2015 Jul; 98(7):4850-68. PubMed ID: 25958273 [TBL] [Abstract][Full Text] [Related]
17. Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. Coe ML; Nagaraja TG; Sun YD; Wallace N; Towne EG; Kemp KE; Hutcheson JP J Anim Sci; 1999 Aug; 77(8):2259-68. PubMed ID: 10462007 [TBL] [Abstract][Full Text] [Related]
19. Effects of increasing levels of corn dried distillers grains with solubles and monensin on intake, digestion, and ruminal fermentation in beef heifers fed high-barley grain diets. Xu L; Jin Y; He ML; Li C; McAllister TA; Yang WZ J Anim Sci; 2013 Nov; 91(11):5390-8. PubMed ID: 24045473 [TBL] [Abstract][Full Text] [Related]
20. Incidence, prevalence, severity, and risk factors for ruminal acidosis in feedlot steers during backgrounding, diet transition, and finishing. Castillo-Lopez E; Wiese BI; Hendrick S; McKinnon JJ; McAllister TA; Beauchemin KA; Penner GB J Anim Sci; 2014 Jul; 92(7):3053-63. PubMed ID: 24879761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]