These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8586614)
21. Thermodynamics of inhibitor binding to the catalytic site of glucoamylase from Aspergillus niger determined by displacement titration calorimetry. Sigurskjold BW; Berland CR; Svensson B Biochemistry; 1994 Aug; 33(33):10191-9. PubMed ID: 8060985 [TBL] [Abstract][Full Text] [Related]
22. Physicochemical characterisation of the two active site mutants Trp(52)-->Phe and Asp(55)-->Val of glucoamylase from Aspergillus niger. Christensen T; Frandsen TP; Kaarsholm NC; Svensson B; Sigurskjold BW Biochim Biophys Acta; 2002 Dec; 1601(2):163-71. PubMed ID: 12445478 [TBL] [Abstract][Full Text] [Related]
23. The starch-binding domain from glucoamylase disrupts the structure of starch. Southall SM; Simpson PJ; Gilbert HJ; Williamson G; Williamson MP FEBS Lett; 1999 Mar; 447(1):58-60. PubMed ID: 10218582 [TBL] [Abstract][Full Text] [Related]
25. Roles of the aromatic side chains in the binding of substrates, inhibitors, and cyclomalto-oligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification, and mutagenesis. Svensson B; Sierks MR Carbohydr Res; 1992 Apr; 227():29-44. PubMed ID: 1499029 [TBL] [Abstract][Full Text] [Related]
26. Starch-binding domain of Aspergillus glucoamylase-I. Interaction with beta-cyclodextrin and maltoheptaose. Kusnadi AR; Chang HY; Nikolov ZL; Metzler DE; Metzler CM Ann N Y Acad Sci; 1994 May; 721():168-77. PubMed ID: 8010668 [TBL] [Abstract][Full Text] [Related]
27. 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Jacks AJ; Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Eur J Biochem; 1995 Oct; 233(2):568-78. PubMed ID: 7588803 [TBL] [Abstract][Full Text] [Related]
28. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. Sorimachi K; Jacks AJ; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP J Mol Biol; 1996 Jun; 259(5):970-87. PubMed ID: 8683599 [TBL] [Abstract][Full Text] [Related]
29. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading. Sumitani J; Tottori T; Kawaguchi T; Arai M Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962 [TBL] [Abstract][Full Text] [Related]
30. Thermodynamics of inhibitor binding to mutant forms of glucoamylase from Aspergillus niger determined by isothermal titration calorimetry. Berland CR; Sigurskjold BW; Stoffer B; Frandsen TP; Svensson B Biochemistry; 1995 Aug; 34(32):10153-61. PubMed ID: 7640269 [TBL] [Abstract][Full Text] [Related]
31. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Juge N; Nøhr J; Le Gal-Coëffet MF; Kramhøft B; Furniss CS; Planchot V; Archer DB; Williamson G; Svensson B Biochim Biophys Acta; 2006 Feb; 1764(2):275-84. PubMed ID: 16403494 [TBL] [Abstract][Full Text] [Related]
32. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin. Fagerström R Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2399-407. PubMed ID: 7952191 [TBL] [Abstract][Full Text] [Related]
33. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Paldi T; Levy I; Shoseyov O Biochem J; 2003 Jun; 372(Pt 3):905-10. PubMed ID: 12646045 [TBL] [Abstract][Full Text] [Related]
34. Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: relation to starch processing. Bagheri A; Khodarahmi R; Mostafaie A Food Chem; 2014 Oct; 161():270-8. PubMed ID: 24837950 [TBL] [Abstract][Full Text] [Related]
35. Starch-binding domain shuffling in Aspergillus niger glucoamylase. Cornett CA; Fang TY; Reilly PJ; Ford C Protein Eng; 2003 Jul; 16(7):521-9. PubMed ID: 12915730 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure of the starch-binding domain of glucoamylase from Aspergillus niger. Suyama Y; Muraki N; Kusunoki M; Miyake H Acta Crystallogr F Struct Biol Commun; 2017 Oct; 73(Pt 10):550-554. PubMed ID: 28994402 [TBL] [Abstract][Full Text] [Related]
37. Residual structures in the unfolded state of starch-binding domain of glucoamylase revealed by near-UV circular dichroism and protein engineering techniques. Ota C; Ikeguchi M; Tanaka A; Hamada D Biochim Biophys Acta; 2016 Oct; 1864(10):1464-72. PubMed ID: 27164491 [TBL] [Abstract][Full Text] [Related]
38. Glucoamylase: structure/function relationships, and protein engineering. Sauer J; Sigurskjold BW; Christensen U; Frandsen TP; Mirgorodskaya E; Harrison M; Roepstorff P; Svensson B Biochim Biophys Acta; 2000 Dec; 1543(2):275-293. PubMed ID: 11150611 [TBL] [Abstract][Full Text] [Related]
39. Spectroscopic study of the temperature-dependent conformation of glucoamylase. Urbanova M; Pancoska P; Keiderling TA Biochim Biophys Acta; 1993 Dec; 1203(2):290-4. PubMed ID: 8268213 [TBL] [Abstract][Full Text] [Related]
40. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Sauer J; Christensen T; Frandsen TP; Mirgorodskaya E; McGuire KA; Driguez H; Roepstorff P; Sigurskjold BW; Svensson B Biochemistry; 2001 Aug; 40(31):9336-46. PubMed ID: 11478902 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]