BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8587927)

  • 1. The role of ATP-sensitive potassium channels in striatal dopamine release: an in vivo microdialysis study.
    Tanaka T; Yoshida M; Yokoo H; Mizoguchi K; Tanaka M
    Pharmacol Biochem Behav; 1995 Dec; 52(4):831-5. PubMed ID: 8587927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-sensitive K+ channel openers block sulpiride-induced dopamine release in the rat striatum.
    Tanaka T; Yoshida M; Yokoo H; Mizoguchi K; Tanaka M
    Eur J Pharmacol; 1996 Feb; 297(1-2):35-41. PubMed ID: 8851163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of quinine on autoreceptor-regulated dopamine release in the rat striatum.
    Tanaka T; Vincent SR; Nomikos GG; Fibiger HC
    J Neurochem; 1992 Nov; 59(5):1640-5. PubMed ID: 1357098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of ATP-sensitive K+ channel blocker (quinine) on the dopamine decrease induced by selective D3 agonist (7-OH-DPAT) in the rat striatum].
    Shimizu K; Watanabe M; Kodama Y; Hagino Y; Ogasawara T; Nomura S
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2001 Nov; 21(5):145-56. PubMed ID: 11797417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release.
    Avshalumov MV; Rice ME
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11729-34. PubMed ID: 13679582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opening of ATP-sensitive K(+) (KATP) channels enhance hydroxyl radical generation induced by MPP(+) in rat striatum.
    Obata T; Nakashima M
    J Neurol Sci; 2016 Jul; 366():180-183. PubMed ID: 27288802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular acidification and ADP enhance nicorandil induction of ATP sensitive potassium channel current in cardiomyocytes.
    Jahangir A; Terzic A; Kurachi Y
    Cardiovasc Res; 1994 Jun; 28(6):831-5. PubMed ID: 7923287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum.
    Zhang YX; Yamashita H; Ohshita T; Sawamoto N; Nakamura S
    Brain Res; 1995 Sep; 691(1-2):205-12. PubMed ID: 8590054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selegiline induces dopamine release through ATP-sensitive potassium channels in the rat caudate-putamen in vitro.
    Neusch C; Schnierle S; Moser A
    Neurochem Int; 1997 Aug; 31(2):307-11. PubMed ID: 9220464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-sensitive potassium channels regulate in vivo dopamine release in rat striatum.
    Zhu DX; Sullivan JP; Brioni JD
    Jpn J Pharmacol; 1999 Jan; 79(1):59-64. PubMed ID: 10082318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein.
    Kamouchi M; Kitamura K
    Am J Physiol; 1994 May; 266(5 Pt 2):H1687-98. PubMed ID: 8203568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive K+ channel. A comparison with pinacidil and lemakalim.
    Shen WK; Tung RT; Machulda MM; Kurachi Y
    Circ Res; 1991 Oct; 69(4):1152-8. PubMed ID: 1834361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.
    Bao L; Avshalumov MV; Rice ME
    J Neurosci; 2005 Oct; 25(43):10029-40. PubMed ID: 16251452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of striatal dopamine release by CB1 receptor activation requires nonsynaptic communication involving GABA, H2O2, and KATP channels.
    Sidló Z; Reggio PH; Rice ME
    Neurochem Int; 2008 Jan; 52(1-2):80-8. PubMed ID: 17767979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of systemic administration of iptakalim on extracellular neurotransmitter levels in the striatum of unilateral 6-hydroxydopamine-lesioned rats.
    Wang S; Hu LF; Zhang Y; Sun T; Sun YH; Liu SY; Ding JH; Wu J; Hu G
    Neuropsychopharmacology; 2006 May; 31(5):933-40. PubMed ID: 16123757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells.
    Allard B; Lazdunski M
    Eur J Pharmacol; 1993 Jun; 236(3):419-26. PubMed ID: 8359200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of tamoxifen on opening ATP-sensitive K
    Obata T
    J Clin Neurosci; 2019 May; 63():196-201. PubMed ID: 30795876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum.
    Milton SL; Lutz PL
    Am J Physiol Regul Integr Comp Physiol; 2005 Jul; 289(1):R77-83. PubMed ID: 15718391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G proteins modulate D2 receptor-coupled K(ATP) channels in rat dopaminergic terminals.
    Neusch C; Runde D; Moser A
    Neurochem Res; 2000 Dec; 25(12):1521-6. PubMed ID: 11152380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of etomidate and midazolam on vascular adenosine triphosphate-sensitive potassium channels: isometric tension and patch clamp studies.
    Nakamura A; Kawahito S; Kawano T; Nazari H; Takahashi A; Kitahata H; Nakaya Y; Oshita S
    Anesthesiology; 2007 Mar; 106(3):515-22. PubMed ID: 17325510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.