BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8588888)

  • 21. Factors affecting L-lactate utilization by Selenomonas ruminantium.
    Nisbet DJ; Martin SA
    J Anim Sci; 1994 May; 72(5):1355-61. PubMed ID: 8056684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conjugative transfer of tetracycline resistance in rumen streptococcal strains.
    Jonecová Z; Mareková M; Kmeĭ V
    Folia Microbiol (Praha); 1994; 39(1):83-6. PubMed ID: 8181787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ruminal lactic acid-utilizing bacteria on adaptation of cattle to high-energy rations.
    Cook MK; Cooley JH; Edens JD; Goetsch DD; Das NK; Huber TL
    Am J Vet Res; 1977 Jul; 38(7):1015-7. PubMed ID: 883707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate.
    Wallace RJ
    J Gen Microbiol; 1978 Jul; 107(1):45-52. PubMed ID: 103995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deoxyribonuclease activity in Selenomonas ruminantium, Streptococcus bovis, and Bacteroides ovatus.
    Al-Khaldi SF; Durocher LL; Martin SA
    Curr Microbiol; 2000 Sep; 41(3):182-6. PubMed ID: 10915204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The bacterial-like lactate shuttle components from heterotrophic Euglena gracilis.
    Jasso-Chávez R; García-Cano I; Marín-Hernández A; Mendoza-Cózatl D; Rendón JL; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Sep; 1709(2):181-90. PubMed ID: 16112076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmids of Selenomonas ruminantium and development of host-vector system.
    Hermanová A; Pristas P; Molnárová V; Fliegerová K; Javorský P
    Folia Microbiol (Praha); 2001; 46(4):289-91. PubMed ID: 11830938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium.
    Kanegasaki S; Takahashi H
    J Bacteriol; 1967 Jan; 93(1):456-63. PubMed ID: 6020417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of sugars and malate on ruminal microorganisms.
    Martin SA; Sullivan HM; Evans JD
    J Dairy Sci; 2000 Nov; 83(11):2574-9. PubMed ID: 11104277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium.
    Martin SA
    J Dairy Sci; 1996 Apr; 79(4):550-6. PubMed ID: 8744219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of a temperate bacteriophage from the ruminal anaerobe Selenomonas ruminantium.
    Lockington RA; Attwood GT; Brooker JD
    Appl Environ Microbiol; 1988 Jun; 54(6):1575-80. PubMed ID: 2843096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two restriction endonucleases in Selenomonas ruminantium subsp. lactilytica.
    Pristas P; Fliegerová K; Javorský P
    Lett Appl Microbiol; 1998 Aug; 27(2):83-5. PubMed ID: 9750328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploitation of the broad specificity of the membrane-bound isoenzyme of lactate dehydrogenase for direct selection of null mutants in Neisseria gonorrhoeae.
    Hendry AT; Bhatnagar RK; Shanmugam KT; Jensen RA
    J Gen Microbiol; 1990 Jan; 136(1):45-50. PubMed ID: 2112587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dilution rates influence ammonia-assimilating enzyme activities and cell parameters of Selenomonas ruminantium strain D in continuous (glucose-limited) culture.
    Patterson JA; Chalova VI; Hespell RB; Ricke SC
    J Appl Microbiol; 2010 Jan; 108(1):357-65. PubMed ID: 19702858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM.
    Gao C; Jiang T; Dou P; Ma C; Li L; Kong J; Xu P
    PLoS One; 2012; 7(5):e36519. PubMed ID: 22574176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large plasmids in ruminal strains of Selenomonas ruminantium.
    Fliegerová K; Benada O; Flint HJ
    Lett Appl Microbiol; 1998 Apr; 26(4):243-7. PubMed ID: 9633087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of extracellular lactate on growth of rumen lactate producers.
    Simunek J; Marounek M
    Arch Tierernahr; 1994; 46(3):277-81. PubMed ID: 7619002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stoichiometry of glucose and starch splitting by strains of amylolytic bacteria from the rumen and anaerobic digester.
    Marounek M; Bartos S
    J Appl Bacteriol; 1986 Jul; 61(1):81-6. PubMed ID: 3759723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source.
    van Gylswyk NO; Hippe H; Rainey FA
    Int J Syst Bacteriol; 1997 Jan; 47(1):155-9. PubMed ID: 8995818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.