BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8589059)

  • 1. Peroxisomal beta-oxidation activity and catalase activity during development and aging in mouse liver.
    Périchon R; Bourre JM
    Biochimie; 1995; 77(4):288-93. PubMed ID: 8589059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of unsaturated fatty acids on the peroxisomal enzyme activities of Tetrahymena pyriformis.
    Gotoh K; Takei M; Watanabe T; Suga T
    J Biochem; 1986 Oct; 100(4):903-9. PubMed ID: 2880840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of peroxisomal and mitochondrial enzymes in rat liver.
    Krahling JB; Gee R; Gauger JA; Tolbert NE
    J Cell Physiol; 1979 Dec; 101(3):375-90. PubMed ID: 118970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food deprivation changes peroxisomal beta-oxidation activity but not catalase activity during postnatal development in pig tissues.
    Yu XX; Drackley JK; Odle J
    J Nutr; 1998 Jul; 128(7):1114-21. PubMed ID: 9649593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway of alpha-linolenic acid through the mitochondrial outer membrane in the rat liver and influence on the rate of oxidation. Comparison with linoleic and oleic acids.
    Clouet P; Niot I; Bézard J
    Biochem J; 1989 Nov; 263(3):867-73. PubMed ID: 2597132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsomal and cytosolic epoxide hydrolases, the peroxisomal fatty acid beta-oxidation system and catalase. Activities, distribution and induction in rat liver parenchymal and non-parenchymal cells.
    Steinberg P; Schladt L; Dienes HP; Timms C; Oesch F
    Eur J Biochem; 1988 Sep; 176(1):39-45. PubMed ID: 3416872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging-related decrease in liver peroxisomal fatty acid oxidation in control and clofibrate-treated mice. A biochemical study and mechanistic approach.
    Périchon R; Bourre JM
    Mech Ageing Dev; 1996 Jun; 87(2):115-26. PubMed ID: 8783194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in eighteen-carbon saturated, monounsaturated and polyunsaturated fatty acid peroxisomal oxidation in mouse brain during development and aging.
    Bourre JM; Piciotti M
    Biochem Mol Biol Int; 1997 Mar; 41(3):461-8. PubMed ID: 9090453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver.
    Foerster EC; Fährenkemper T; Rabe U; Graf P; Sies H
    Biochem J; 1981 Jun; 196(3):705-12. PubMed ID: 7317011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucagon and fasting do not activate peroxisomal fatty acid beta-oxidation in rat liver.
    Slauter RW; Yamazaki RK
    Arch Biochem Biophys; 1984 Aug; 233(1):197-202. PubMed ID: 6540549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of peroxisomal fatty acid beta-oxidation in ethanol metabolism.
    Inatomi N; Kato S; Ito D; Lieber CS
    Biochem Biophys Res Commun; 1989 Aug; 163(1):418-23. PubMed ID: 2775275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation.
    Hashimoto F; Hayashi H
    Biochim Biophys Acta; 1987 Sep; 921(1):142-50. PubMed ID: 2887206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Canadian Society for Nutritional Sciences 1995 Young Scientist Award Lecture. Recent studies on the synthesis, beta-oxidation, and deficiency of linoleate and alpha-linolenate: are essential fatty acids more aptly named indispensable or conditionally dispensable fatty acids?
    Cunnane SC
    Can J Physiol Pharmacol; 1996 Jun; 74(6):629-39. PubMed ID: 8909772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation: NADH oxidation by acetoacetyl-CoA and H2O2.
    Hashimoto F; Hayashi H
    J Biochem; 1990 Sep; 108(3):426-31. PubMed ID: 2277034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalase-dependent ethanol oxidation in perfused rat liver. Requirement for fatty-acid-stimulated H2O2 production by peroxisomes.
    Handler JA; Thurman RG
    Eur J Biochem; 1988 Sep; 176(2):477-84. PubMed ID: 3416882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations of peroxisomal function in ischemia-reperfusion injury of rat kidney.
    Gulati S; Ainol L; Orak J; Singh AK; Singh I
    Biochim Biophys Acta; 1993 Oct; 1182(3):291-8. PubMed ID: 8399363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced potential for oxidative stress in hyperinsulinemic rats: imbalance between hepatic peroxisomal hydrogen peroxide production and decomposition due to hyperinsulinemia.
    Xu L; Badr MZ
    Horm Metab Res; 1999 Apr; 31(4):278-82. PubMed ID: 10333085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rates of H2O2 generation from peroxisomal beta-oxidation are sufficient to account for fatty acid-stimulated ethanol metabolism in perfused rat liver.
    Handler JA; Thurman RG
    Alcohol; 1987; 4(2):131-4. PubMed ID: 3580135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxisomal beta-oxidation and sodium valproate.
    Van den Branden C; Roels F
    Biochem Pharmacol; 1985 Jun; 34(12):2147-9. PubMed ID: 3924057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in peroxisomes and mitochondria in liver of ethionine exposed rats: a biochemical and morphological investigation.
    Aarsaether N; Aarsland A; Kryvi H; Nilsson A; Svardal A; Ueland PM; Berge RK
    Carcinogenesis; 1989 Jun; 10(6):987-94. PubMed ID: 2498002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.