These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8589060)

  • 41. Precursors to 16S and 23S ribosomal RNA from a ribonuclear III-strain of Escherichia coli contain intact RNase III processing sites.
    Gegenheimer P; Apirion D
    Nucleic Acids Res; 1980 Apr; 8(8):1873-91. PubMed ID: 6253950
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SuhB Associates with Nus Factors To Facilitate 30S Ribosome Biogenesis in Escherichia coli.
    Singh N; Bubunenko M; Smith C; Abbott DM; Stringer AM; Shi R; Court DL; Wade JT
    mBio; 2016 Mar; 7(2):e00114. PubMed ID: 26980831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the rnc-97 mutation of RNAaseIII: a glycine to glutamate substitution increases the requirement for magnesium ions.
    Davidov Y; Rahat A; Flechner I; Pines O
    J Gen Microbiol; 1993 Apr; 139(4):717-24. PubMed ID: 8515231
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Escherichia coli ribonuclease III cleavage sites.
    Robertson HD
    Cell; 1982 Oct; 30(3):669-72. PubMed ID: 6754088
    [No Abstract]   [Full Text] [Related]  

  • 45. Both N-terminal catalytic and C-terminal RNA binding domain contribute to substrate specificity and cleavage site selection of RNase III.
    Conrad C; Evguenieva-Hackenberg E; Klug G
    FEBS Lett; 2001 Nov; 509(1):53-8. PubMed ID: 11734205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determinant role of E. coli RNase III in the decay of both specific and heterologous mRNAs.
    Santos JM; Drider D; Marujo PE; Lopez P; Arraiano CM
    FEMS Microbiol Lett; 1997 Dec; 157(1):31-8. PubMed ID: 9418237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression and characterization of RNase III and Era proteins. Products of the rnc operon of Escherichia coli.
    Chen SM; Takiff HE; Barber AM; Dubois GC; Bardwell JC; Court DL
    J Biol Chem; 1990 Feb; 265(5):2888-95. PubMed ID: 2105934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli.
    Britton RA; Powell BS; Dasgupta S; Sun Q; Margolin W; Lupski JR; Court DL
    Mol Microbiol; 1998 Feb; 27(4):739-50. PubMed ID: 9515700
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maturation of precursor 10Sa RNA in Escherichia coli is a two-step process: the first reaction is catalyzed by RNase III in presence of Mn2+.
    Srivastava RK; Miczak A; Apirion D
    Biochimie; 1990 Nov; 72(11):791-802. PubMed ID: 1707682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural basis for the function of SuhB as a transcription factor in ribosomal RNA synthesis.
    Huang YH; Said N; Loll B; Wahl MC
    Nucleic Acids Res; 2019 Jul; 47(12):6488-6503. PubMed ID: 31020314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A conserved sequence element in ribonuclease III processing signals is not required for accurate in vitro enzymatic cleavage.
    Chelladurai BS; Li H; Nicholson AW
    Nucleic Acids Res; 1991 Apr; 19(8):1759-66. PubMed ID: 1709490
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interplay among processing and degradative enzymes and a precursor ribonucleic acid in the selective maturation and maintenance of ribonucleic acid molecules.
    Gurevitz M; Apirion D
    Biochemistry; 1983 Aug; 22(17):4000-5. PubMed ID: 6351914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unaltered stability of newly synthesized RNA in strains of Escherichia coli missing a ribonuclease specific for double-stranded RNA.
    Apirion D; Watson N
    Mol Gen Genet; 1975; 136(4):317-26. PubMed ID: 16094999
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and biochemical characterization of Mycobacterium tuberculosis SuhB, an inositol monophosphatase involved in inositol biosynthesis.
    Nigou J; Dover LG; Besra GS
    Biochemistry; 2002 Apr; 41(13):4392-8. PubMed ID: 11914086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression.
    Carzaniga T; Dehò G; Briani F
    J Bacteriol; 2015 Jun; 197(11):1931-8. PubMed ID: 25825432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One functional subunit is sufficient for catalytic activity and substrate specificity of Escherichia coli endoribonuclease III artificial heterodimers.
    Conrad C; Schmitt JG; Evguenieva-Hackenberg E; Klug G
    FEBS Lett; 2002 May; 518(1-3):93-6. PubMed ID: 11997024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. mRNA processing independent of RNase III and RNase E in the expression of the F1845 fimbrial adhesin of Escherichia coli.
    Bilge SS; Apostol JM; Aldape MA; Moseley SL
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1455-9. PubMed ID: 8094558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nucleolytic inactivation and degradation of the RNase III processed pnp message encoding polynucleotide phosphorylase of Escherichia coli.
    Hajnsdorf E; Carpousis AJ; Régnier P
    J Mol Biol; 1994 Jun; 239(4):439-54. PubMed ID: 7516438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA processing enzymes RNase III, E and P in Escherichia coli are not ribosomal enzymes.
    Srivastava RA; Srivastava N; Apirion D
    Biochem Int; 1991 Sep; 25(1):57-65. PubMed ID: 1722976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.