These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8589196)

  • 1. Protein release kinetics of a biodegradable implant for fracture non-unions.
    Agrawal CM; Best J; Heckman JD; Boyan BD
    Biomaterials; 1995 Nov; 16(16):1255-60. PubMed ID: 8589196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone morphogenetic protein but not transforming growth factor-beta enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer.
    Heckman JD; Ehler W; Brooks BP; Aufdemorte TB; Lohmann CH; Morgan T; Boyan BD
    J Bone Joint Surg Am; 1999 Dec; 81(12):1717-29. PubMed ID: 10608383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous-coated titanium implant impregnated with a biodegradable protein delivery system.
    Agrawal CM; Pennick A; Wang X; Schenck RC
    J Biomed Mater Res; 1997 Sep; 36(4):516-21. PubMed ID: 9294767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of ultrasound irradiation on a biodegradable 50-50% copolymer of polylactic and polyglycolic acids.
    Agrawal CM; Kennedy ME; Micallef DM
    J Biomed Mater Res; 1994 Aug; 28(8):851-9. PubMed ID: 7983083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone induction and bone repair by composites of bone morphogenetic protein and biodegradable synthetic polymers.
    Miyamoto S; Takaoka K
    Ann Chir Gynaecol Suppl; 1993; 207():69-75. PubMed ID: 8154840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer.
    Isobe M; Yamazaki Y; Oida S; Ishihara K; Nakabayashi N; Amagasa T
    J Biomed Mater Res; 1996 Nov; 32(3):433-8. PubMed ID: 8897149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel casting of resorbable polymers. 2. In-vitro degradation of bone graft substitutes.
    Coombes AG; Heckman JD
    Biomaterials; 1992; 13(5):297-307. PubMed ID: 1600032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable poly-D,L-lactic acid-polyethylene glycol block copolymers as a BMP delivery system for inducing bone.
    Saito N; Okada T; Horiuchi H; Murakami N; Takahashi J; Nawata M; Ota H; Miyamoto S; Nozaki K; Takaoka K
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S92-8. PubMed ID: 11314801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro degradation and release characteristics of biodegradable implants containing trypsin inhibitor.
    Athanasiou KA; Singhal AR; Agrawal CM; Boyan BD
    Clin Orthop Relat Res; 1995 Jun; (315):272-81. PubMed ID: 7634681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technique to control pH in vicinity of biodegrading PLA-PGA implants.
    Agrawal CM; Athanasiou KA
    J Biomed Mater Res; 1997; 38(2):105-14. PubMed ID: 9178737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.
    Lohmann CH; Schwartz Z; Niederauer GG; Carnes DL; Dean DD; Boyan BD
    Biomaterials; 2000 Jan; 21(1):49-61. PubMed ID: 10619678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering.
    Agrawal CM; McKinney JS; Lanctot D; Athanasiou KA
    Biomaterials; 2000 Dec; 21(23):2443-52. PubMed ID: 11055292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of antibiotics from coated orthopedic implants.
    Price JS; Tencer AF; Arm DM; Bohach GA
    J Biomed Mater Res; 1996 Mar; 30(3):281-6. PubMed ID: 8698690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora.
    van der Elst M; Klein CP; de Blieck-Hogervorst JM; Patka P; Haarman HJ
    Biomaterials; 1999 Jan; 20(2):121-8. PubMed ID: 10022781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits.
    Cohen SB; Meirisch CM; Wilson HA; Diduch DR
    Biomaterials; 2003 Jul; 24(15):2653-60. PubMed ID: 12726719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections.
    Benoit MA; Mousset B; Delloye C; Bouillet R; Gillard J
    Int Orthop; 1997; 21(6):403-8. PubMed ID: 9498152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning electron microscopic study of cell attachment to biodegradable polymer implants.
    Zislis T; Mark DE; Cerbas EL; Hollinger JO
    J Oral Implantol; 1989; 15(3):160-7. PubMed ID: 2561760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins.
    Eliaz RE; Kost J
    J Biomed Mater Res; 2000 Jun; 50(3):388-96. PubMed ID: 10737881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG modulated release of etanidazole from implantable PLGA/PDLA discs.
    Wang F; Lee T; Wang CH
    Biomaterials; 2002 Sep; 23(17):3555-66. PubMed ID: 12109679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo-in vitro study of biodegradable methadone delivery systems.
    Negrin CM; Delgado A; Llabrés M; Evora C
    Biomaterials; 2001 Mar; 22(6):563-70. PubMed ID: 11219720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.