These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8589215)
21. Self-association of bovine prothrombin fragment 1 in the presence of metal ions. Use of a covalent cross-linking reagent to study the reaction. Tarvers RC; Roberts HR; Lundblad RL J Biol Chem; 1984 Feb; 259(3):1944-50. PubMed ID: 6546386 [TBL] [Abstract][Full Text] [Related]
22. Amino-terminal alanine functions in a calcium-specific process essential for membrane binding by prothrombin fragment 1. Welsch DJ; Nelsestuen GL Biochemistry; 1988 Jun; 27(13):4939-45. PubMed ID: 3167022 [TBL] [Abstract][Full Text] [Related]
23. Chemical modification of prothrombin fragment 1: documentation of sequential, two-stage loss of protein function. Welsch DJ; Pletcher CH; Nelsestuen GL Biochemistry; 1988 Jun; 27(13):4933-8. PubMed ID: 3167021 [TBL] [Abstract][Full Text] [Related]
24. Dye binding probes of lipid-binding structures. An investigation of 2-p-toluidinylnaphthylene-6-sulfonate binding to human and bovine prothrombin and fragment 1 in the presence and absence of calcium and magnesium ions. Sarasua MM; Washington K; Gabriel DA; Bourne C; Kabis CW; Hiskey RG; Koehler KA Biochim Biophys Acta; 1983 Jan; 742(1):257-64. PubMed ID: 6687436 [TBL] [Abstract][Full Text] [Related]
25. Characterization of the metal ion-binding domains from rat alpha- and beta-parvalbumins. Henzl MT; Agah S; Larson JD Biochemistry; 2003 Apr; 42(12):3594-607. PubMed ID: 12653564 [TBL] [Abstract][Full Text] [Related]
26. Calcium-dependent and calcium-independent interactions of prothrombin fragment 1 with phosphatidylglycerol/phosphatidylcholine unilamellar vesicles. Lentz BR; Alford DR; Jones ME; Dombrose FA Biochemistry; 1985 Nov; 24(24):6997-7005. PubMed ID: 3841009 [TBL] [Abstract][Full Text] [Related]
27. Cooperativity in the calcium ion-induced quenching of the intrinsic fluorescence of a series of normal and GLA-deficient bovine prothrombin fragment 1 molecules. Malhotra OP; Valencic F; Fossel ET; Koehler KA J Protein Chem; 1991 Feb; 10(1):31-41. PubMed ID: 2054061 [TBL] [Abstract][Full Text] [Related]
28. Translational diffusion of bovine prothrombin fragment 1 weakly bound to supported planar membranes: measurement by total internal reflection with fluorescence pattern photobleaching recovery. Huang Z; Pearce KH; Thompson NL Biophys J; 1994 Oct; 67(4):1754-66. PubMed ID: 7819508 [TBL] [Abstract][Full Text] [Related]
29. Production of metal ion-dependent monoclonal antibodies against peptides in bovine prothrombin fragment 1. Mahassni SH; Klapper DG; Hiskey RG Hum Antibodies; 2008; 17(3-4):85-96. PubMed ID: 19029666 [TBL] [Abstract][Full Text] [Related]
30. Surface binding kinetics of prothrombin fragment 1 on planar membranes measured by total internal reflection fluorescence microscopy. Pearce KH; Hiskey RG; Thompson NL Biochemistry; 1992 Jul; 31(26):5983-95. PubMed ID: 1627541 [TBL] [Abstract][Full Text] [Related]
31. Europium(III) binding to bovine prothrombin residues 1-39 and to bovine prothrombin fragment 1. Marsh HC; Sarasua MM; Madar DA; Hiskey RG; Koehler KA J Biol Chem; 1981 Aug; 256(15):7863-70. PubMed ID: 6894919 [TBL] [Abstract][Full Text] [Related]
32. Fourier transform infrared spectroscopic study of Ca2+ and membrane-induced secondary structural changes in bovine prothrombin and prothrombin fragment 1. Wu JR; Lentz BR Biophys J; 1991 Jul; 60(1):70-80. PubMed ID: 1909190 [TBL] [Abstract][Full Text] [Related]
33. Carbohydrate-linked asparagine-101 of prothrombin contains a metal ion protected acetylation site. Acetylation of this site causes loss of metal ion induced protein fluorescence change. Welsch DJ; Nelsestuen GL Biochemistry; 1988 Jun; 27(13):4946-52. PubMed ID: 3167023 [TBL] [Abstract][Full Text] [Related]
34. Predicted secondary structure of bovine prothrombin fragment 1 and related proteins in different environments by circular dichroism spectroscopy. Balbes LM; Pedersen LG; Hiskey RG Int J Pept Protein Res; 1992 Aug; 40(2):127-33. PubMed ID: 1446970 [TBL] [Abstract][Full Text] [Related]
36. Prothrombin fragments containing kringle domains induce migration and activation of human neutrophils. Mariano-Oliveira A; De Freitas MS; Monteiro RQ; Barja-Fidalgo C Int J Biochem Cell Biol; 2008; 40(3):517-29. PubMed ID: 17951099 [TBL] [Abstract][Full Text] [Related]
37. Influence of metal ions on prothrombin self-association. Demonstration of dimer formation by intermolecular cross-linking with dithiobis(succinimidylpropionate). Tarvers RC; Noyes CM; Roberts HR; Lundblad RL J Biol Chem; 1982 Sep; 257(18):10708-14. PubMed ID: 7107632 [TBL] [Abstract][Full Text] [Related]
38. Kinetic and equilibrium metal-ion-binding behaviour reflected in a metal-ion-dependent antigenic determinant in bovine prothrombin. Comparison with bovine prothrombin fragment 1. Madar DA; Hall TJ; Hiskey RG; Koehler KA Biochem J; 1981 Feb; 193(2):411-8. PubMed ID: 6171251 [TBL] [Abstract][Full Text] [Related]
39. Differences in the metal ion structure between Sr- and Ca-prothrombin fragment 1. Seshadri TP; Skrzypczak-Jankun E; Yin M; Tulinsky A Biochemistry; 1994 Feb; 33(5):1087-92. PubMed ID: 8110739 [TBL] [Abstract][Full Text] [Related]
40. Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin. Arni RK; Padmanabhan K; Padmanabhan KP; Wu TP; Tulinsky A Biochemistry; 1993 May; 32(18):4727-37. PubMed ID: 8387813 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]