BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8589245)

  • 21. The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin.
    Sakurai T
    FEBS Lett; 2006 Mar; 580(7):1729-32. PubMed ID: 16500649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear free-energy analysis of mercury(II) and cadmium(II) binding to three-stranded coiled coils.
    Ghosh D; Lee KH; Demeler B; Pecoraro VL
    Biochemistry; 2005 Aug; 44(31):10732-40. PubMed ID: 16060682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structural role of the copper-coordinating and surface-exposed histidine residue in the blue copper protein azurin.
    Jeuken LJ; Ubbink M; Bitter JH; van Vliet P; Meyer-Klaucke W; Canters GW
    J Mol Biol; 2000 Jun; 299(3):737-55. PubMed ID: 10835281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability and nickel binding properties of peptides designed as scaffolds for the stabilization of Ni(II)-Fe(4)S(4) bridged assemblies.
    Laplaza CE; Holm RH
    J Biol Inorg Chem; 2002 Apr; 7(4-5):451-60. PubMed ID: 11941503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new molecular mechanics force field for the oxidized form of blue copper proteins.
    Comba P; Remenyi R
    J Comput Chem; 2002 May; 23(7):697-705. PubMed ID: 11948587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooperative metal binding and helical folding in model peptides of treble-clef zinc fingers.
    Sénèque O; Bonnet E; Joumas FL; Latour JM
    Chemistry; 2009; 15(19):4798-810. PubMed ID: 19388025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins.
    Battistuzzi G; Bellei M; Borsari M; Canters GW; de Waal E; Jeuken LJ; Ranieri A; Sola M
    Biochemistry; 2003 Aug; 42(30):9214-20. PubMed ID: 12885256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectrochemical studies on the blue copper protein azurin from Alcaligenes denitrificans.
    Ainscough EW; Bingham AG; Brodie AM; Ellis WR; Gray HB; Loehr TM; Plowman JE; Norris GE; Baker EN
    Biochemistry; 1987 Jan; 26(1):71-82. PubMed ID: 3030404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure.
    Basumallick L; Sarangi R; DeBeer George S; Elmore B; Hooper AB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2005 Mar; 127(10):3531-44. PubMed ID: 15755175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and spectroscopic characterization of first-row transition metal(II) substituted blue copper model complexes with hydrotris(pyrazolyl)borate.
    Matsunaga Y; Fujisawa K; Ibi N; Miyashita Y; Okamoto K
    Inorg Chem; 2005 Jan; 44(2):325-35. PubMed ID: 15651879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new, model-free calculation method to determine the coordination modes and distribution of copper(II) among the metal binding sites of multihistidine peptides using circular dichroism spectroscopy.
    Osz K
    J Inorg Biochem; 2008 Dec; 102(12):2184-95. PubMed ID: 18973951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The type 1 copper site of pseudoazurin: axial and rhombic.
    Gast P; Broeren FG; Sottini S; Aoki R; Takashina A; Yamaguchi T; Kohzuma T; Groenen EJ
    J Inorg Biochem; 2014 Aug; 137():57-63. PubMed ID: 24813397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. H-bonding maintains the active site of type 1 copper proteins: site-directed mutagenesis of Asn38 in poplar plastocyanin.
    Dong S; Ybe JA; Hecht MH; Spiro TG
    Biochemistry; 1999 Mar; 38(11):3379-85. PubMed ID: 10079082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of cofactors in folding of the blue-copper protein azurin.
    Wittung-Stafshede P
    Inorg Chem; 2004 Dec; 43(25):7926-33. PubMed ID: 15578826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plastocyanin binding to photosystem I as a function of the charge state of the metal ion: effect of metal site conformation.
    Danielsen E; Scheller HV; Bauer R; Hemmingsen L; Bjerrum MJ; Hansson O
    Biochemistry; 1999 Aug; 38(35):11531-40. PubMed ID: 10471305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alkaline transition of Rhus vernicifera stellacyanin, an unusual blue copper protein.
    Fernández CO; Sannazzaro AI; Vila AJ
    Biochemistry; 1997 Aug; 36(34):10566-70. PubMed ID: 9265638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ONIOM calculation on azurin: effect of metal ion substitutions.
    Rajapandian V; Hakkim V; Subramanian V
    J Phys Chem A; 2009 Jul; 113(30):8615-25. PubMed ID: 19572691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of hydrogen bonding at the active site of a cupredoxin: the Phe114Pro azurin variant.
    Yanagisawa S; Banfield MJ; Dennison C
    Biochemistry; 2006 Jul; 45(29):8812-22. PubMed ID: 16846224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases.
    Boulanger MJ; Murphy ME
    J Mol Biol; 2002 Feb; 315(5):1111-27. PubMed ID: 11827480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.