BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8589245)

  • 41. Identification of the Zn(II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module.
    Farrell RA; Thorvaldsen JL; Winge DR
    Biochemistry; 1996 Feb; 35(5):1571-80. PubMed ID: 8634288
    [TBL] [Abstract][Full Text] [Related]  

  • 42. X-ray structure of a blue-copper nitrite reductase in two crystal forms. The nature of the copper sites, mode of substrate binding and recognition by redox partner.
    Dodd FE; Van Beeumen J; Eady RR; Hasnain SS
    J Mol Biol; 1998 Sep; 282(2):369-82. PubMed ID: 9735294
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ATCUN-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis.
    Sankararamakrishnan R; Verma S; Kumar S
    Proteins; 2005 Jan; 58(1):211-21. PubMed ID: 15508143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of a small metal binding protein from Nitrosomonas europaea.
    Barney BM; LoBrutto R; Francisco WA
    Biochemistry; 2004 Sep; 43(35):11206-13. PubMed ID: 15366930
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mapping the electronic structure of the blue copper site in plastocyanin by NMR relaxation.
    Hansen DF; Led JJ
    J Am Chem Soc; 2004 Feb; 126(4):1247-52. PubMed ID: 14746497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complex formation processes of terminally protected peptides containing two or three histidyl residues. Characterization of the mixed metal complexes of peptides.
    Rajković S; Kállay C; Serényi R; Malandrinos G; Hadjiliadis N; Sanna D; Sóvágó I
    Dalton Trans; 2008 Oct; (37):5059-71. PubMed ID: 18802621
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus.
    Slutter CE; Sanders D; Wittung P; Malmström BG; Aasa R; Richards JH; Gray HB; Fee JA
    Biochemistry; 1996 Mar; 35(11):3387-95. PubMed ID: 8639488
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding metalloprotein folding using a de novo design strategy.
    Ghosh D; Pecoraro VL
    Inorg Chem; 2004 Dec; 43(25):7902-15. PubMed ID: 15578824
    [TBL] [Abstract][Full Text] [Related]  

  • 49. X-ray absorption investigation of a unique protein domain able to bind both copper(I) and copper(II) at adjacent sites of the N-terminus of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    D'Angelo P; Pacello F; Mancini G; Proux O; Hazemann JL; Desideri A; Battistoni A
    Biochemistry; 2005 Oct; 44(39):13144-50. PubMed ID: 16185082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. De novo design and spectroscopic characterization of a dinucleating copper-binding pentadecapeptide.
    Rockcliffe DA; Cammers A; Murali A; Russell WK; DeRose VJ
    Inorg Chem; 2006 Jan; 45(2):472-4. PubMed ID: 16411672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantum chemical calculation of type-1 cu reduction potential: ligand interaction and solvation effect.
    Si D; Li H
    J Phys Chem A; 2009 Nov; 113(46):12979-87. PubMed ID: 19810740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolution of blue copper proteins.
    Rydén L
    Prog Clin Biol Res; 1988; 274():349-66. PubMed ID: 3043463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction of cytochrome c with the blue copper proteins, plastocyanin and azurin.
    Augustin MA; Chapman SK; Davies DM; Sykes AG; Speck SH; Margoliash E
    J Biol Chem; 1983 May; 258(10):6405-9. PubMed ID: 6304038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. De novo design and characterization of copper metallopeptides inspired by native cupredoxins.
    Plegaria JS; Duca M; Tard C; Friedlander TJ; Deb A; Penner-Hahn JE; Pecoraro VL
    Inorg Chem; 2015 Oct; 54(19):9470-82. PubMed ID: 26381361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metalloproteins diversified: the auracyanins are a family of cupredoxins that stretch the spectral and redox limits of blue copper proteins.
    King JD; McIntosh CL; Halsey CM; Lada BM; Niedzwiedzki DM; Cooley JW; Blankenship RE
    Biochemistry; 2013 Nov; 52(46):8267-75. PubMed ID: 24147561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pi-pi interaction between aromatic ring and copper-coordinated His81 imidazole regulates the blue copper active-site structure.
    Abdelhamid RF; Obara Y; Uchida Y; Kohzuma T; Dooley DM; Brown DE; Hori H
    J Biol Inorg Chem; 2007 Feb; 12(2):165-73. PubMed ID: 17031705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins.
    Lim J; Vachet RW
    Anal Chem; 2003 Mar; 75(5):1164-72. PubMed ID: 12641237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitrosocyanin, a red cupredoxin-like protein from Nitrosomonas europaea.
    Arciero DM; Pierce BS; Hendrich MP; Hooper AB
    Biochemistry; 2002 Feb; 41(6):1703-9. PubMed ID: 11827513
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure of azurin from Alcaligenes denitrificans at 2.5 A resolution.
    Norris GE; Anderson BF; Baker EN
    J Mol Biol; 1983 Apr; 165(3):501-21. PubMed ID: 6842609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Azurin-Derived Peptides: Comparison of Nickel- and Copper-Binding Properties.
    Das D; Ainavarapu SRK
    Inorg Chem; 2021 Jul; 60(13):9720-9726. PubMed ID: 34137603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.