These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8589544)

  • 41. An exact analysis of the multistage model explaining dose-response concavity.
    Cox LA
    Risk Anal; 1995 Jun; 15(3):359-68. PubMed ID: 7604169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Testing goodness of fit for stochastic models of carcinogenesis.
    Gregori G; Hanin L; Luebeck G; Moolgavkar S; Yakovlev A
    Math Biosci; 2002 Jan; 175(1):13-29. PubMed ID: 11779625
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data.
    Little MP; Vineis P; Li G
    J Theor Biol; 2008 Sep; 254(2):229-38. PubMed ID: 18640693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A stochastic two-stage carcinogenesis model: a new approach to computing the probability of observing tumor in animal bioassays.
    Yang GL; Chen CW
    Math Biosci; 1991 May; 104(2):247-58. PubMed ID: 1804462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using the biological two-stage model to assess risk from short-term exposures.
    Chen JJ; Kodell RL; Gaylor DW
    Risk Anal; 1988 Jun; 8(2):223-30. PubMed ID: 3413310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A mechanistic approach to modelling the risk of liver tumours in mice exposed to fumonisin B1 in the diet.
    Kodell RL; Young JF; Delongchamp RR; Turturro A; Chen JJ; Gaylor DW; Howard PC; Zheng Q
    Food Addit Contam; 2001 Mar; 18(3):237-53. PubMed ID: 11304033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A biologically based model of growth and senescence of Syrian hamster embryo (SHE) cells after exposure to arsenic.
    Liao KH; Gustafson DL; Fox MH; Chubb LS; Reardon KF; Yang RS
    Environ Health Perspect; 2001 Dec; 109(12):1207-13. PubMed ID: 11748027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the parameters of the clonal expansion model.
    Heidenreich WF
    Radiat Environ Biophys; 1996 May; 35(2):127-9. PubMed ID: 8792461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Additive and multiplicative relative risk in the two-stage clonal expansion model of carcinogenesis.
    Kodell RL; Krewski D; Zielinski JM
    Risk Anal; 1991 Sep; 11(3):483-90. PubMed ID: 1947353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Armitage-Doll two-stage model: implications and extension.
    Chen CW
    Risk Anal; 1993 Jun; 13(3):273-9. PubMed ID: 8341806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A stochastic model of cellular transformation and its relevance to chemical carcinogenesis.
    Alfano FD
    Math Biosci; 1998 Apr; 149(1):95-106. PubMed ID: 9610113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models.
    Conolly RB; Kimbell JS
    Toxicol Appl Pharmacol; 1994 Feb; 124(2):284-95. PubMed ID: 8122275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonlinear stochastic modeling of aphid population growth.
    Matis JH; Kiffe TR; Matis TI; Stevenson DE
    Math Biosci; 2005 Dec; 198(2):148-68. PubMed ID: 16183082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The two-stage model of carcinogenesis: overcoming the nonidentifiability dilemma.
    Sherman CD; Portier CJ
    Risk Anal; 1997 Jun; 17(3):367-74. PubMed ID: 9232019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers.
    Jilkine A; Gutenkunst RN
    PLoS Comput Biol; 2014 Mar; 10(3):e1003481. PubMed ID: 24603301
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A bivariate limiting distribution of tumor latency time.
    Rachev ST; Wu C; Yakovlev AYu
    Math Biosci; 1995 Jun; 127(2):127-47. PubMed ID: 7795315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incorporating additional biological phenomena into two-stage cancer models.
    Sielken RL; Bretzlaff RS; Stevenson DE
    Prog Clin Biol Res; 1994; 387():237-60. PubMed ID: 7972250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. First and second moments and the mean Hamming distance in a stochastic replication-mutation model for biological macromolecules.
    Swetina J
    J Math Biol; 1989; 27(4):463-83. PubMed ID: 2769088
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inflammation as a Cancer Co-Initiator: New Mechanistic Model Predicts Low/Negligible Risk at Noninflammatory Carcinogen Doses.
    Bogen KT
    Dose Response; 2019; 17(2):1559325819847834. PubMed ID: 31205456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.