These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 8589651)
1. Differential regulation of glucose transport and glucose transporter (GLUT-1) gene expression by vanadate, phorbol ester and okadaic acid in L6 skeletal muscle cells. Venkatesan N; Davidson MB Biochem Mol Biol Int; 1995 Nov; 37(4):773-83. PubMed ID: 8589651 [TBL] [Abstract][Full Text] [Related]
2. Tyrosine phosphatase inhibitors, vanadate and pervanadate, stimulate glucose transport and GLUT translocation in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and protein kinase C. Tsiani E; Bogdanovic E; Sorisky A; Nagy L; Fantus IG Diabetes; 1998 Nov; 47(11):1676-86. PubMed ID: 9792535 [TBL] [Abstract][Full Text] [Related]
3. Phorbol esters affect skeletal muscle glucose transport in a fiber type-specific manner. Wright DC; Geiger PC; Rheinheimer MJ; Han DH; Holloszy JO Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E305-9. PubMed ID: 15053989 [TBL] [Abstract][Full Text] [Related]
4. Regulation of glucose transport in differentiating HD3 cells. Grdisa M; White MK Cell Biochem Funct; 2000 Dec; 18(4):293-7. PubMed ID: 11180292 [TBL] [Abstract][Full Text] [Related]
5. Protein kinase C-independent effects of protein kinase D3 in glucose transport in L6 myotubes. Chen J; Lu G; Wang QJ Mol Pharmacol; 2005 Jan; 67(1):152-62. PubMed ID: 15496505 [TBL] [Abstract][Full Text] [Related]
6. Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Enrique-Tarancón G; Castan I; Morin N; Marti L; Abella A; Camps M; Casamitjana R; Palacín M; Testar X; Degerman E; Carpéné C; Zorzano A Biochem J; 2000 Aug; 350 Pt 1(Pt 1):171-80. PubMed ID: 10926841 [TBL] [Abstract][Full Text] [Related]
7. Coupling between [arginine8]-vasopressin-activated increases in protein tyrosine phosphorylation and cellular calcium in A7r5 aortic smooth muscle cells. Kaplan N; Di Salvo J Arch Biochem Biophys; 1996 Feb; 326(2):271-80. PubMed ID: 8611034 [TBL] [Abstract][Full Text] [Related]
8. Regulation of glucose transporter 1 expression by gliclazide in rat L6 myoblasts. Imamur H; Morimoto I; Tanaka Y; Hashimoto O; Kanda K; Yamashita S; Eto S Diabetes Nutr Metab; 2001 Dec; 14(6):308-14. PubMed ID: 11853362 [TBL] [Abstract][Full Text] [Related]
9. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats. Kramer D; Shapiro R; Adler A; Bush E; Rondinone CM Metabolism; 2001 Nov; 50(11):1294-300. PubMed ID: 11699047 [TBL] [Abstract][Full Text] [Related]
10. Vanadate enhances but does not normalize glucose transport and insulin receptor phosphorylation in skeletal muscle from obese women with gestational diabetes mellitus. Shao J; Catalano PM; Yamashita H; Ishizuka T; Friedman JE Am J Obstet Gynecol; 2000 Nov; 183(5):1263-70. PubMed ID: 11084576 [TBL] [Abstract][Full Text] [Related]
12. Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1. Ito S; Nemoto T; Satoh S; Sekihara H; Seyama Y; Kubota S Arch Biochem Biophys; 2000 Jan; 373(1):72-82. PubMed ID: 10620325 [TBL] [Abstract][Full Text] [Related]
13. Overproduction of the beta 1 form of protein kinase C enhances phorbol ester induction of glucose transporter mRNA. Mountjoy KG; Housey GM; Flier JS Mol Endocrinol; 1989 Dec; 3(12):2018-27. PubMed ID: 2628736 [TBL] [Abstract][Full Text] [Related]
14. Mode of regulation of the extracellular signal-regulated kinases in the pancreatic beta-cell line MIN6 and their implication in the regulation of insulin gene transcription. Benes C; Poitout V; Marie JC; Martin-Perez J; Roisin MP; Fagard R Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):219-25. PubMed ID: 10229678 [TBL] [Abstract][Full Text] [Related]
15. Activation of macrophage PtdIns-PLC by phorbol ester and vanadate: involvement of reactive oxygen species and tyrosine phosphorylation. Goldman R; Zor U Biochem Biophys Res Commun; 1994 Feb; 199(1):334-8. PubMed ID: 7510106 [TBL] [Abstract][Full Text] [Related]
16. Phorbol esters stimulate muscle glucose transport by a mechanism distinct from the insulin and hypoxia pathways. Hansen PA; Corbett JA; Holloszy JO Am J Physiol; 1997 Jul; 273(1 Pt 1):E28-36. PubMed ID: 9252476 [TBL] [Abstract][Full Text] [Related]
17. Differential activation and inhibition of lymphocyte proliferation by phorbol esters, mezerein, teleocidin, and okadaic acid. Grove DS; Mastro AM Cancer Res; 1991 Jan; 51(1):82-8. PubMed ID: 1988110 [TBL] [Abstract][Full Text] [Related]
18. Activation of protein kinase C zeta induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Braiman L; Alt A; Kuroki T; Ohba M; Bak A; Tennenbaum T; Sampson SR Mol Cell Biol; 2001 Nov; 21(22):7852-61. PubMed ID: 11604519 [TBL] [Abstract][Full Text] [Related]
19. Regulation of glucose transport and transporter 4 (GLUT-4) in muscle and adipocytes of sucrose-fed rats: effects of N-3 poly- and monounsaturated fatty acids. Peyron-Caso E; Fluteau-Nadler S; Kabir M; Guerre-Millo M; Quignard-Boulangé A; Slama G; Rizkalla SW Horm Metab Res; 2002 Jul; 34(7):360-6. PubMed ID: 12189582 [TBL] [Abstract][Full Text] [Related]
20. Acute inhibition of insulin-stimulated glucose transport by the phosphatase inhibitor, okadaic acid. Corvera S; Jaspers S; Pasceri M J Biol Chem; 1991 May; 266(14):9271-5. PubMed ID: 1709166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]