These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8589739)

  • 1. Expression of a cystine-rich fish antifreeze in transgenic Drosophila melanogaster.
    Duncker BP; Hermans JA; Davies PL; Walker VK
    Transgenic Res; 1996 Jan; 5(1):49-55. PubMed ID: 8589739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystine-rich fish antifreeze is produced as an active proprotein precursor in fall armyworm cells.
    Duncker BP; Gauthier SY; Davies PL
    Biochem Biophys Res Commun; 1994 Sep; 203(3):1851-7. PubMed ID: 7945337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.
    Scotter AJ; Kuntz DA; Saul M; Graham LA; Davies PL; Rose DR
    Protein Expr Purif; 2006 Jun; 47(2):374-83. PubMed ID: 16330225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifreeze protein does not confer cold tolerance to transgenic Drosophila melanogaster.
    Duncker BP; Chen CP; Davies PL; Walker VK
    Cryobiology; 1995 Dec; 32(6):521-7. PubMed ID: 8556858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased gene dosage augments antifreeze protein levels in transgenic Drosophila melanogaster.
    Duncker BP; Davies PL; Walker VK
    Transgenic Res; 1999 Feb; 8(1):45-50. PubMed ID: 10399366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of an antifreeze protein precursor from transgenic Drosophila: evidence for partial processing.
    Peters ID; Rancourt DE; Davies PL; Walker VK
    Biochim Biophys Acta; 1993 Jan; 1171(3):247-54. PubMed ID: 8093842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling studies of binding of sea raven type II antifreeze protein to ice.
    Wierzbicki A; Madura JD; Salmon C; Sönnichsen F
    J Chem Inf Comput Sci; 1997; 37(6):1006-10. PubMed ID: 9392856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperactive spruce budworm antifreeze protein expression in transgenic Drosophila does not confer cold shock tolerance.
    Tyshenko MG; Walker VK
    Cryobiology; 2004 Aug; 49(1):28-36. PubMed ID: 15265714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wolffish antifreeze protein from transgenic Drosophila.
    Rancourt DE; Peters ID; Walker VK; Davies PL
    Biotechnology (N Y); 1990 May; 8(5):453-7. PubMed ID: 1367435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin.
    Loewen MC; Gronwald W; Sönnichsen FD; Sykes BD; Davies PL
    Biochemistry; 1998 Dec; 37(51):17745-53. PubMed ID: 9922140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance.
    Kenward KD; Brandle J; McPherson J; Davies PL
    Transgenic Res; 1999 Apr; 8(2):105-17. PubMed ID: 10481310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a beetle, Dendroides canadensis, antifreeze protein in Drosophila melanogaster.
    Nicodemus J; O'tousa JE; Duman JG
    J Insect Physiol; 2006 Aug; 52(8):888-96. PubMed ID: 16828791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystine-rich type II antifreeze protein precursor is initiated from the third AUG codon of its mRNA.
    Hayes PH; Scott GK; Ng NF; Hew CL; Davies PL
    J Biol Chem; 1989 Nov; 264(31):18761-7. PubMed ID: 2572595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins.
    Ewart KV; Li Z; Yang DS; Fletcher GL; Hew CL
    Biochemistry; 1998 Mar; 37(12):4080-5. PubMed ID: 9521729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin.
    Ewart KV; Fletcher GL
    Mol Mar Biol Biotechnol; 1993 Feb; 2(1):20-7. PubMed ID: 8364686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile.
    Gwak IG; Jung WS; Kim HJ; Kang SH; Jin E
    Mar Biotechnol (NY); 2010 Nov; 12(6):630-9. PubMed ID: 20024694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.