These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 8589856)

  • 21. Updating visual space during motion in depth.
    Li N; Angelaki DE
    Neuron; 2005 Oct; 48(1):149-58. PubMed ID: 16202715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduce risk of inducing spatial disorientation using physiologically compatible ground lighting.
    Schmidt RT
    Aviat Space Environ Med; 1999 Jun; 70(6):598-603. PubMed ID: 10373053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlations between visual test results and flying performance on the advanced simulator for pilot training (ASPT).
    Kruk R; Regan D; Beverley KI; Longridge T
    Aviat Space Environ Med; 1981 Aug; 52(8):455-60. PubMed ID: 7259697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epidemiology of USAF spatial disorientation aircraft accidents, 1 Jan 1958-31 Dec 1968.
    Barnum F; Bonner RH
    Aerosp Med; 1971 Aug; 42(8):896-8. PubMed ID: 5098584
    [No Abstract]   [Full Text] [Related]  

  • 25. The optokinetic cervical reflex in pilots of high-performance aircraft.
    Merryman RF; Cacioppo AJ
    Aviat Space Environ Med; 1997 Jun; 68(6):479-87. PubMed ID: 9184734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The accessibility of spatial channels for stereo and motion.
    Hess RF; Wang YZ; Liu CH
    Vision Res; 2006 Apr; 46(8-9):1318-26. PubMed ID: 16364391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of motion signals on the perceived position of spatial pattern.
    Nishida S; Johnston A
    Nature; 1999 Feb; 397(6720):610-2. PubMed ID: 10050853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification problems of U.S. Air Force spatial disorientation accidents, 1989-91.
    Lyons TJ; Ercoline WR; Freeman JE; Gillingham KK
    Aviat Space Environ Med; 1994 Feb; 65(2):147-52. PubMed ID: 8161326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The spatial resolutions of the apposition compound eye and its neuro-sensory feature detectors: observation versus theory.
    Horridge A
    J Insect Physiol; 2005 Mar; 51(3):243-66. PubMed ID: 15749108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Failure to update the egocentric representation of the visual space through labyrinthine signal.
    Blouin J; Gauthier GM; Vercher JL
    Brain Cogn; 1995 Oct; 29(1):1-22. PubMed ID: 8845120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monovision contact lens use in the aviation environment: a report of a contact lens-related aircraft accident.
    Nakagawara VB; Véronneau SJ
    Optometry; 2000 Jun; 71(6):390-5. PubMed ID: 15326889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual motion perception at the time of saccadic eye movements and its relation to spatial mislocalization.
    Lee C; Lee J
    Ann N Y Acad Sci; 2005 Apr; 1039():160-5. PubMed ID: 15826970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gaze-centered updating of remembered visual space during active whole-body translations.
    Van Pelt S; Medendorp WP
    J Neurophysiol; 2007 Feb; 97(2):1209-20. PubMed ID: 17135474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depth perception from second-order-motion stimuli yoked to head movement.
    Ichikawa M; Nishida S; Ono H
    Vision Res; 2004 Nov; 44(25):2945-54. PubMed ID: 15380998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Factors determining geocentric orientation of pilots].
    Lapa VV; Bukalov EE; Lemeshchenko NA
    Kosm Biol Aviakosm Med; 1985; 19(4):19-23. PubMed ID: 4057924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Priming of first- and second-order motion: mechanisms and neural substrates.
    Campana G; Pavan A; Casco C
    Neuropsychologia; 2008 Jan; 46(2):393-8. PubMed ID: 17825851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pilot's perception in the control of aircraft motions.
    Hosman R; Stassen H
    Control Eng Pract; 1999; 7(11):1421-8. PubMed ID: 11542920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visuovestibular perception of self-motion modeled as a dynamic optimization process.
    Reymond G; Droulez J; Kemeny A
    Biol Cybern; 2002 Oct; 87(4):301-14. PubMed ID: 12386745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The spatial disorientation problem in the United States Air Force.
    Gillingham KK
    J Vestib Res; 1992; 2(4):297-306. PubMed ID: 1342404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.