These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8590415)

  • 1. A reevaluation of the thermodynamics of growth of Saccharomyces cerevisiae on glucose, ethanol, and acetic acid.
    Battley EH
    Can J Microbiol; 1995; 41(4-5):388-98. PubMed ID: 8590415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternate method of calculating the free-energy change accompanying the growth of saccharomyces cerevisiae (Hansen) on three substrates.
    Battley EH
    Biotechnol Bioeng; 1979 Nov; 21(11):1929-61. PubMed ID: 385077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical evaluation of growth yields of yeasts.
    Verduyn C; Stouthamer AH; Scheffers WA; van Dijken JP
    Antonie Van Leeuwenhoek; 1991 Jan; 59(1):49-63. PubMed ID: 2059011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new thermodynamically based correlation of chemotrophic biomass yields.
    Heijnen JJ
    Antonie Van Leeuwenhoek; 1991; 60(3-4):235-56. PubMed ID: 1807196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study of the thermodynamics of microbial growth using Saccharomyces cerevisiae and a different free energy equation.
    Battley EH
    Q Rev Biol; 2013 Jun; 88(2):69-96. PubMed ID: 23909225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture: decoupling between anabolism and catabolism.
    Duboc P; von Stockar U; Villadsen J
    Biotechnol Bioeng; 1998 Oct; 60(2):180-9. PubMed ID: 10099419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.
    Zakhartsev M; Yang X; Reuss M; Pörtner HO
    J Therm Biol; 2015 Aug; 52():117-29. PubMed ID: 26267506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth.
    von Stockar U; Liu J
    Biochim Biophys Acta; 1999 Aug; 1412(3):191-211. PubMed ID: 10482783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenylate energy charge in Saccharomyces cerevisiae during starvation.
    Ball WJ; Atkinson DE
    J Bacteriol; 1975 Mar; 121(3):975-82. PubMed ID: 1090610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates.
    Boender LG; de Hulster EA; van Maris AJ; Daran-Lapujade PA; Pronk JT
    Appl Environ Microbiol; 2009 Sep; 75(17):5607-14. PubMed ID: 19592533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae.
    Pampulha ME; Loureiro-Dias MC
    FEMS Microbiol Lett; 2000 Mar; 184(1):69-72. PubMed ID: 10689168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of the bound dissipation function: change of the psi u-function during the growth of yeast.
    Schaarschmidt B; Zotin AI; Brettel R; Lamprecht I
    Arch Microbiol; 1975 Sep; 105(1):13-6. PubMed ID: 1103768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of microbial growth coupled to metabolism of glucose, ethanol, short-chain organic acids, and hydrogen.
    Roden EE; Jin Q
    Appl Environ Microbiol; 2011 Mar; 77(5):1907-9. PubMed ID: 21216913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
    Teh KY; Lutz AE
    J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow microcalorimetry of a respiration-deficient mutant of Saccharomyces cerevisiae.
    Loureiro-Dias MC; Arrabaça JD
    Z Allg Mikrobiol; 1982; 22(2):119-22. PubMed ID: 7046269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Available electron and energetic yields in fermentation processes.
    Erickson LE; Oner MD
    Ann N Y Acad Sci; 1983; 413():99-113. PubMed ID: 6367593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.
    Woo JM; Yang KM; Kim SU; Blank LM; Park JB
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):6085-94. PubMed ID: 24706214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy requirements for the uptake of L-leucine by Saccharomyces cerevisiae.
    Ramos EH; de Bongioanni LC; Claisse ML; Stoppani AO
    Biochim Biophys Acta; 1975 Jul; 394(3):470-81. PubMed ID: 1093572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.