BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8590459)

  • 1. The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast.
    Randez-Gil F; Prieto JA; Sanz P
    Curr Genet; 1995 Jul; 28(2):101-7. PubMed ID: 8590459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast.
    Sanz P; Randez-Gil F; Prieto JA
    Yeast; 1994 Sep; 10(9):1195-202. PubMed ID: 7754708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose.
    Defenouillère Q; Verraes A; Laussel C; Friedrich A; Schacherer J; Léon S
    Sci Signal; 2019 Sep; 12(597):. PubMed ID: 31481524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of Mig1 and Rag5 as expressional regulators in thermotolerant yeast Kluyveromyces marxianus.
    Nurcholis M; Nitiyon S; Suprayogi ; Rodrussamee N; Lertwattanasakul N; Limtong S; Kosaka T; Yamada M
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):395-410. PubMed ID: 30397769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a phosphatase specific for 2-deoxyglucose-6-phosphate in a yeast mutant.
    Martin M; Heredia CF
    FEBS Lett; 1977 Nov; 83(2):245-8. PubMed ID: 201492
    [No Abstract]   [Full Text] [Related]  

  • 6. DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed.
    Randez-Gil F; Blasco A; Prieto JA; Sanz P
    Yeast; 1995 Oct; 11(13):1233-40. PubMed ID: 8553694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative control at a distance mediates catabolite repression in yeast.
    Struhl K
    Nature; 1985 Oct 31-Nov 6; 317(6040):822-4. PubMed ID: 3903516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae.
    Kahar P; Taku K; Tanaka S
    J Biosci Bioeng; 2011 May; 111(5):557-63. PubMed ID: 21257343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A yeast protein with homology to the beta-subunit of G proteins is involved in control of heme-regulated and catabolite-repressed genes.
    Zhang M; Rosenblum-Vos LS; Lowry CV; Boakye KA; Zitomer RS
    Gene; 1991 Jan; 97(2):153-61. PubMed ID: 1900249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Molecular mechanisms of catabolic repression in yeast].
    Stasyk OV; Sybirnyĭ AA
    Mikrobiol Z; 2003; 65(3):84-103. PubMed ID: 12945198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rox1 mediated repression. Oxygen dependent repression in yeast.
    Kastaniotis AJ; Zitomer RS
    Adv Exp Med Biol; 2000; 475():185-95. PubMed ID: 10849660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1.
    Lakshmanan J; Mosley AL; Ozcan S
    Curr Genet; 2003 Oct; 44(1):19-25. PubMed ID: 14508605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3.
    O'Donnell AF; McCartney RR; Chandrashekarappa DG; Zhang BB; Thorner J; Schmidt MC
    Mol Cell Biol; 2015 Mar; 35(6):939-55. PubMed ID: 25547292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Dcr2p phosphatase destabilizes Sic1p in Saccharomyces cerevisiae.
    Pathak R; Blank HM; Guo J; Ellis S; Polymenis M
    Biochem Biophys Res Commun; 2007 Sep; 361(3):700-4. PubMed ID: 17673172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. METABOLIC STUDIES WITH 2-DEOXYHEXOSES. II. RESISTANCE TO 2- DEOXYGLUCOSE IN A YEAST MUTANT.
    HEREDIA CF; SOLS A
    Biochim Biophys Acta; 1964 May; 86():224-8. PubMed ID: 14167420
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of the proteinase B structural gene PRB1 in Saccharomyces cerevisiae.
    Naik RR; Nebes V; Jones EW
    J Bacteriol; 1997 Mar; 179(5):1469-74. PubMed ID: 9045801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory Internalization of Pma1 in V-ATPase Mutants in
    Velivela SD; Kane PM
    Genetics; 2018 Feb; 208(2):655-672. PubMed ID: 29254995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis.
    Srinivasan S; Seaman M; Nemoto Y; Daniell L; Suchy SF; Emr S; De Camilli P; Nussbaum R
    Eur J Cell Biol; 1997 Dec; 74(4):350-60. PubMed ID: 9438131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.
    Tani M; Kuge O
    Yeast; 2014 Apr; 31(4):145-58. PubMed ID: 24578286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.