BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8590459)

  • 21. Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1.
    Heyken WT; Wagner C; Wittmann J; Albrecht A; Schüller HJ
    Yeast; 2003 Oct; 20(14):1177-88. PubMed ID: 14587102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.
    Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG
    Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö; Nielsen J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel changes in catabolite repression of haem biosynthesis and cytochromes in repression-resistant mutants of Saccharomyces cerevisiae.
    Borralho LM; Malamud DR; Panek AD; Tenan MN; Oliveira DE; Mattoon JR
    J Gen Microbiol; 1989 May; 135(5):1217-27. PubMed ID: 2695599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production.
    Kim SJ; Lee JE; Lee DY; Park H; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8989-9002. PubMed ID: 30121750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production.
    Alcaíno J; Bravo N; Córdova P; Marcoleta AE; Contreras G; Barahona S; Sepúlveda D; Fernández-Lobato M; Baeza M; Cifuentes V
    PLoS One; 2016; 11(9):e0162838. PubMed ID: 27622474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of maltose transport in Saccharomyces cerevisiae.
    Brondijk TH; Konings WN; Poolman B
    Arch Microbiol; 2001 Jul; 176(1-2):96-105. PubMed ID: 11479708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genes involved in the regulation of invertase production in Saccharomyces cerevisiae.
    del Castillo Agudo L; Gozalbo D
    Microbiologia; 1994 Dec; 10(4):385-94. PubMed ID: 7772293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 'Sugarcoating' 2-deoxyglucose: mechanisms that suppress its toxic effects.
    Schmidt MC; O'Donnell AF
    Curr Genet; 2021 Feb; 67(1):107-114. PubMed ID: 33136227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approaches to the study of Rox1 repression of the hypoxic genes in the yeast Saccharomyces cerevisiae.
    Zitomer RS; Limbach MP; Rodriguez-Torres AM; Balasubramanian B; Deckert J; Snow PM
    Methods; 1997 Mar; 11(3):279-88. PubMed ID: 9073571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae.
    Guarente L; Lalonde B; Gifford P; Alani E
    Cell; 1984 Feb; 36(2):503-11. PubMed ID: 6319028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose.
    Ozcan S; Vallier LG; Flick JS; Carlson M; Johnston M
    Yeast; 1997 Feb; 13(2):127-37. PubMed ID: 9046094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the pyruvate permease gene (JEN1) in glucose derepression yeast (Saccharomyces cerevisiae) Isolated from a 2-deoxyglucose-tolerant mutant, and its application to sake making.
    Tsuboi H; Wakisaka Y; Hirotsune M; Akao T; Yamada O; Akita O
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):765-71. PubMed ID: 12784616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose signaling controls the transcription of retrotransposon Ty2-917 in Saccharomyces cerevisiae.
    Türkel S; Arik E
    Virus Genes; 2007 Dec; 35(3):713-7. PubMed ID: 17682934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae.
    Lodi T; Donnini C; Ferrero I
    J Gen Microbiol; 1991 May; 137(5):1039-44. PubMed ID: 1865178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.