These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8590717)

  • 21. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.
    Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM
    Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Setting up and running molecular dynamics simulations of membrane proteins.
    Kandt C; Ash WL; Tieleman DP
    Methods; 2007 Apr; 41(4):475-88. PubMed ID: 17367719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Polarization of bilayer membranes in phase separation. A quasi-one-dimensional model].
    Pasynkov AS
    Biofizika; 1987; 32(1):54-8. PubMed ID: 3814644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation and separation of membrane-bound proteins using hydrodynamic forces.
    Jönsson P; Gunnarsson A; Höök F
    Anal Chem; 2011 Jan; 83(2):604-11. PubMed ID: 21155531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size-controlled nanopores in lipid membranes with stabilizing electric fields.
    Fernández ML; Risk M; Reigada R; Vernier PT
    Biochem Biophys Res Commun; 2012 Jun; 423(2):325-30. PubMed ID: 22659739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The hydrophobic and electrostatic effect of basic polyamino acid-DNA polyion complex on artificial bilayer lipid membrane.
    Amao Y; Kumazawa N
    Nucleic Acids Symp Ser; 1993; (29):149-51. PubMed ID: 8247746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.
    Huang F; Fang Z; Mast J; Chen W
    Bioelectromagnetics; 2013 May; 34(4):253-63. PubMed ID: 23322376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatically driven spatial patterns in lipid membrane composition.
    Parthasarathy R; Cripe PA; Groves JT
    Phys Rev Lett; 2005 Jul; 95(4):048101. PubMed ID: 16090844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electro-optic properties of organic nanotubes.
    Stoylov SP; Stoilova-McPhie S
    Adv Colloid Interface Sci; 2011 Aug; 166(1-2):24-35. PubMed ID: 21679911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The intraglobular electrostatic field of an enzyme. II. Effect of environment polarization].
    Topolev VV; Krishtalik LI
    Mol Biol (Mosk); 1983; 17(6):1177-85. PubMed ID: 6656750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophoretic mobility of a monotopic membrane protein inserted into the top of supported lipid bilayers.
    Harb F; Giudici-Orticoni MT; Guiral M; Tinland B
    Eur Phys J E Soft Matter; 2016 Dec; 39(12):127. PubMed ID: 28012146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How electric fields modify alkane solubility in lipid bilayers.
    White SH
    Science; 1980 Mar; 207(4435):1075-7. PubMed ID: 17759839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of nonlinear electrostatics on transfer energies between liquid phases: charge burial is far less expensive than Born model.
    Gong H; Hocky G; Freed KF
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11146-51. PubMed ID: 18678891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanics of nonplanar membranes with force-dipole activity.
    Lomholt MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061913. PubMed ID: 16906870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Organizing role of electric fields in structured enzymatic systems].
    Valleton JM; Sanfeld A
    C R Acad Sci III; 1985; 300(12):449-52. PubMed ID: 3924354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrohydrodynamic model of vesicle deformation in alternating electric fields.
    Vlahovska PM; Gracià RS; Aranda-Espinoza S; Dimova R
    Biophys J; 2009 Jun; 96(12):4789-803. PubMed ID: 19527639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concentrating membrane proteins using asymmetric traps and AC electric fields.
    Cheetham MR; Bramble JP; McMillan DG; Krzeminski L; Han X; Johnson BR; Bushby RJ; Olmsted PD; Jeuken LJ; Marritt SJ; Butt JN; Evans SD
    J Am Chem Soc; 2011 May; 133(17):6521-4. PubMed ID: 21476549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electric field effects in proteins in membranes.
    Coster HG; Chilcott TC
    Bioelectrochemistry; 2002 May; 56(1-2):141-6. PubMed ID: 12009461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic structure factor of a lipid bilayer in the presence of a high electric field.
    Zakhvataev VE
    J Chem Phys; 2019 Dec; 151(23):234902. PubMed ID: 31864280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vector description of electric and hydrophobic interactions in protein homodimers.
    Mozo-Villarías A; Cedano J; Querol E
    Eur Biophys J; 2016 May; 45(4):341-6. PubMed ID: 26658743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.