These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A regional blood circulation alternative to in-series two compartment urea kinetic modeling. Schneditz D; Van Stone JC; Daugirdas JT ASAIO J; 1993; 39(3):M573-7. PubMed ID: 8268602 [TBL] [Abstract][Full Text] [Related]
3. Quantifying hemodialysis. Depner TA Am J Nephrol; 1996; 16(1):17-28. PubMed ID: 8719762 [TBL] [Abstract][Full Text] [Related]
4. Compartment effects in hemodialysis. Schneditz D; Daugirdas JT Semin Dial; 2001; 14(4):271-7. PubMed ID: 11489202 [TBL] [Abstract][Full Text] [Related]
5. Formal analytical solution to a regional blood flow and diffusion based urea kinetic model. Schneditz D; Daugirdas JT ASAIO J; 1994; 40(3):M667-73. PubMed ID: 8555598 [TBL] [Abstract][Full Text] [Related]
6. Model of fluid and solute shifts during hemodialysis with active transport of sodium and potassium. Pietribiasi M; Waniewski J; Wójcik-Załuska A; Załuska W; Lindholm B PLoS One; 2018; 13(12):e0209553. PubMed ID: 30592754 [TBL] [Abstract][Full Text] [Related]
7. An integrative description of dialysis adequacy indices for different treatment modalities and schedules of dialysis. Debowska M; Waniewski J; Lindholm B Artif Organs; 2007 Jan; 31(1):61-9. PubMed ID: 17209962 [TBL] [Abstract][Full Text] [Related]
8. Does Increasing Dialyzer Blood Flow Always Improve Dialysis Efficiency? Depner TA Home Hemodial Int (1997); 1997 Jan; 1(1):23-27. PubMed ID: 28466597 [TBL] [Abstract][Full Text] [Related]
9. Adequacy of hemodialysis. Ksiazek P; Ksiazek A Ann Univ Mariae Curie Sklodowska Med; 2002; 57(2):303-8. PubMed ID: 12898854 [TBL] [Abstract][Full Text] [Related]
10. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling. Kim JC; Cruz D; Garzotto F; Kaushik M; Teixeria C; Baldwin M; Baldwin I; Nalesso F; Kim JH; Kang E; Kim HC; Ronco C Blood Purif; 2013; 35(1-3):106-11. PubMed ID: 23343554 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of beta2-microglobulin and phosphate during hemodialysis: effects of treatment frequency and duration. Leypoldt JK Semin Dial; 2005; 18(5):401-8. PubMed ID: 16191181 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms determining the ratio of conductivity clearance to urea clearance. Gotch FA; Panlilio FM; Buyaki RA; Wang EX; Folden TI; Levin NW Kidney Int Suppl; 2004 Jul; (89):S3-S24. PubMed ID: 15200406 [TBL] [Abstract][Full Text] [Related]
13. Simulating the effect of exercise on urea clearance in hemodialysis. Smye SW; Lindley EJ; Will EJ J Am Soc Nephrol; 1998 Jan; 9(1):128-32. PubMed ID: 9440097 [TBL] [Abstract][Full Text] [Related]
14. A model of fluid, erythrocyte, and solute transport in the lung. Roselli RJ; Tack G; Harris TR Ann Biomed Eng; 1997; 25(1):46-61. PubMed ID: 9124737 [TBL] [Abstract][Full Text] [Related]
15. Single compartment models for evaluating beta 2-microglobulin clearance during hemodialysis. Leypoldt JK; Cheung AK; Deeter RB ASAIO J; 1997; 43(6):904-9. PubMed ID: 9386841 [TBL] [Abstract][Full Text] [Related]
17. Fractional solute removal and KT/V in different modalities of renal replacement therapy. Waniewski J; Lindholm B Blood Purif; 2004; 22(4):367-76. PubMed ID: 15297787 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of solute transport in extracorporeal therapies. Ronco C; Levin NW Contrib Nephrol; 2005; 149():10-17. PubMed ID: 15876823 [TBL] [Abstract][Full Text] [Related]
19. Higher Kt/V is needed for adequate dialysis if the treatment time is reduced. Insights from a blood flow distribution model. Haraldsson B Nephrol Dial Transplant; 1995 Oct; 10(10):1845-51. PubMed ID: 8592592 [TBL] [Abstract][Full Text] [Related]
20. Intensive Hemodialysis: Effects of Treatment Time and Frequency on Time-Averaged Concentrations of Solutes. Mineshima M Contrib Nephrol; 2018; 196():184-187. PubMed ID: 30041225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]