These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 8592109)
1. Expression of engrailed in an array of identified sensory neurons: comparison with position, axonal arborization, and synaptic connectivity. Blagburn JM; Gibbon CR; Bacon JP J Neurobiol; 1995 Dec; 28(4):493-505. PubMed ID: 8592109 [TBL] [Abstract][Full Text] [Related]
2. Correlation of filiform hair position with sensory afferent morphology and synaptic connections in the second instar cockroach. Thompson KS; Blagburn JM; Gibbon CR; Bacon JP J Comp Neurol; 1992 Jun; 320(2):213-27. PubMed ID: 1619050 [TBL] [Abstract][Full Text] [Related]
3. Co-factors and co-repressors of Engrailed: expression in the central nervous system and cerci of the cockroach, Periplaneta americana. Blagburn JM Cell Tissue Res; 2007 Jan; 327(1):177-87. PubMed ID: 17024417 [TBL] [Abstract][Full Text] [Related]
4. A topographic map of sensory cell terminal arborizations in the cricket CNS; correlation with birthday and position in a sensory array. Murphey RK; Jacklet A; Schuster L J Comp Neurol; 1980 May; 191(1):53-64. PubMed ID: 7400391 [TBL] [Abstract][Full Text] [Related]
5. Positional information determines the anatomy and synaptic specificity of cockroach filiform hair afferents using independent mechanisms. Blagburn JM; Blanco RE; Thompson KS; Bacon JP J Comp Physiol A; 1991 Nov; 169(5):607-14. PubMed ID: 1724462 [TBL] [Abstract][Full Text] [Related]
6. Development of synapses between identified sensory neurones and giant interneurones in the cockroach Periplaneta americana. Blagburn JM; Beadle DJ; Sattelle DB J Embryol Exp Morphol; 1985 Apr; 86():227-46. PubMed ID: 4031743 [TBL] [Abstract][Full Text] [Related]
7. Regeneration of cercal filiform hair sensory neurons in the first-instar cockroach restores escape behavior. Stern M; Ediger VL; Gibbon CR; Blagburn JM; Bacon JP J Neurobiol; 1997 Oct; 33(4):439-58. PubMed ID: 9322160 [TBL] [Abstract][Full Text] [Related]
8. Specificity of synapse formation in the cockroach. Blagburn JM P R Health Sci J; 1988 Aug; 7(2):171-6. PubMed ID: 2847212 [TBL] [Abstract][Full Text] [Related]
9. Development of a sensory afferent projection in the grasshopper embryo. II. Growth and branching of peripheral sensory axons within the central nervous system. Shankland M J Embryol Exp Morphol; 1981 Aug; 64():187-209. PubMed ID: 6171606 [TBL] [Abstract][Full Text] [Related]
10. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity. Chiba A; Murphey RK J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338 [TBL] [Abstract][Full Text] [Related]
11. Specificity of filiform hair afferent synapses onto giant interneurons in Periplaneta americana: anatomy is not a sufficient determinant. Blagburn JM; Thompson KS J Comp Neurol; 1990 Dec; 302(2):255-71. PubMed ID: 2289973 [TBL] [Abstract][Full Text] [Related]
12. Double-stranded RNA interference shows that Engrailed controls the synaptic specificity of identified sensory neurons. Marie B; Bacon JP; Blagburn JM Curr Biol; 2000 Mar; 10(5):289-92. PubMed ID: 10712910 [TBL] [Abstract][Full Text] [Related]
13. Persistent engrailed expression is required to determine sensory axon trajectory, branching, and target choice. Marie B; Cruz-Orengo L; Blagburn JM J Neurosci; 2002 Feb; 22(3):832-41. PubMed ID: 11826113 [TBL] [Abstract][Full Text] [Related]
14. Competition and the dynamics of axon arbor growth in the cricket. Murphey RK J Comp Neurol; 1986 Sep; 251(1):100-10. PubMed ID: 3760254 [TBL] [Abstract][Full Text] [Related]
15. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity. Blagburn JM; Sosa MA; Blanco RE J Comp Neurol; 1996 Sep; 373(4):511-28. PubMed ID: 8889942 [TBL] [Abstract][Full Text] [Related]
16. Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana: I. Uniglomerular projection neurons. Distler PG; Boeckh J J Comp Neurol; 1997 Feb; 378(3):307-19. PubMed ID: 9034893 [TBL] [Abstract][Full Text] [Related]
17. Ectopic sensory neurons in mutant cockroaches compete with normal cells for central targets. Bacon JP; Blagburn JM Development; 1992 Jul; 115(3):773-84. PubMed ID: 1425353 [TBL] [Abstract][Full Text] [Related]
18. Development of a sensory afferent projection in the grasshopper embryo. I. Growth of peripheral pioneer axons within the central nervous system. Shankland M J Embryol Exp Morphol; 1981 Aug; 64():169-85. PubMed ID: 6171605 [TBL] [Abstract][Full Text] [Related]
19. Differential roles of engrailed paralogs in determining sensory axon guidance and synaptic target recognition. Marie B; Blagburn JM J Neurosci; 2003 Aug; 23(21):7854-62. PubMed ID: 12944515 [TBL] [Abstract][Full Text] [Related]
20. Central projections of the antennal cold receptor neurons and hygroreceptor neurons of the cockroach Periplaneta americana. Nishikawa M; Yokohari F; Ishibashi T J Comp Neurol; 1995 Oct; 361(1):165-76. PubMed ID: 8550877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]