These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8592136)

  • 21. Further evidence for nicotinic and muscarinic receptors and their interaction in dog adrenal medulla.
    Tsujimoto A; Nishikawa T
    Eur J Pharmacol; 1975 Dec; 34(2):337-44. PubMed ID: 1234552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of the differential effects of halothane on nicotinic- and muscarinic-receptor-mediated responses of the dog adrenal medulla.
    Sumikawa K; Matsumoto T; Ishizaka N; Nagai H; Amenomori Y; Amakata Y
    Anesthesiology; 1982 Dec; 57(6):444-50. PubMed ID: 7149302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Ionic mechanisms evoked by acetylcholine-, nicotine-, and muscarine-induced depolarization of Helix lucorum RPa4 neurons].
    Pivovarov AS; Saganelidze GN
    Neirofiziologiia; 1989; 21(3):305-14. PubMed ID: 2475791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of muscarine on release of catecholamines from the perfused adrenal gland of the cat.
    Kirpekar SM; Prat JC; Schiavone MT
    Br J Pharmacol; 1982 Nov; 77(3):455-60. PubMed ID: 7139197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toluene-induced, Ca(2+)-dependent vesicular catecholamine release in rat PC12 cells.
    Westerink RH; Vijverberg HP
    Neurosci Lett; 2002 Jun; 326(2):81-4. PubMed ID: 12057833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vesicular catecholamine release from rat PC12 cells on acute and subchronic exposure to polychlorinated biphenyls.
    Westerink RH; Vijverberg HP
    Toxicol Appl Pharmacol; 2002 Sep; 183(3):153-9. PubMed ID: 12383706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of Disk and Nanotip Electrodes for Measurement of Single-Cell Amperometry during Exocytotic Release.
    Gu C; Zhang X; Ewing AG
    Anal Chem; 2020 Aug; 92(15):10268-10273. PubMed ID: 32628468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells.
    Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R
    Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulations of early and late secretory processes by activation of protein kinases in the rat adrenal medulla.
    Warashina A
    Biol Signals Recept; 1998; 7(6):307-20. PubMed ID: 9873152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple classes of catecholamine vesicles observed during exocytosis from the Planorbis cell body.
    Chen G; Ewing AG
    Brain Res; 1995 Dec; 701(1-2):167-74. PubMed ID: 8925280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vasoactive intestinal peptide potentiates and directly stimulates catecholamine secretion from rat adrenal chromaffin cells.
    Anderova M; Duchêne AD; Barbara JG; Takeda K
    Brain Res; 1998 Oct; 809(1):97-106. PubMed ID: 9795163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic ethanol exposure inhibits dopamine release via effects on the presynaptic actin cytoskeleton in PC12 cells.
    Funk CK; Dohrman DP
    Brain Res; 2007 Dec; 1185():86-94. PubMed ID: 17996852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exocytotic release of catecholamine from perfused adrenal gland of guinea-pig induced by veratridine.
    Ito S; Nakazato Y; Ohga A
    Br J Pharmacol; 1980 Dec; 70(4):527-35. PubMed ID: 7470728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substance P modulates the time course of nicotinic but not muscarinic catecholamine secretion from perfused adrenal glands of rat.
    Zhou XF; Marley PD; Livett BG
    Br J Pharmacol; 1991 Sep; 104(1):159-65. PubMed ID: 1723914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic hypoxia enhances the secretory response of rat phaeochromocytoma cells to acute hypoxia.
    Taylor SC; Peers C
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):483-91. PubMed ID: 9852329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secretion of catecholamines from individual adrenal medullary chromaffin cells.
    Leszczyszyn DJ; Jankowski JA; Viveros OH; Diliberto EJ; Near JA; Wightman RM
    J Neurochem; 1991 Jun; 56(6):1855-63. PubMed ID: 2027003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells.
    Barlow ST; Louie M; Hao R; Defnet PA; Zhang B
    Anal Chem; 2018 Aug; 90(16):10049-10055. PubMed ID: 30047726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Faster kinetics of quantal catecholamine release in mouse chromaffin cells stimulated with acetylcholine, compared with other secretagogues.
    Calvo-Gallardo E; López-Gil Á; Méndez-López I; Martínez-Ramírez C; Padín JF; García AG
    J Neurochem; 2016 Dec; 139(5):722-736. PubMed ID: 27649809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of exocytotic events from single PC12 cells: amperometric studies in native PC12h, DA-loaded PC12h and bovine adrenal chromaffin cells.
    Sasakawa N; Murayama N; Kumakura K
    Cell Mol Neurobiol; 2005 Jun; 25(3-4):777-87. PubMed ID: 16075391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. L-3,4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro.
    Pothos E; Desmond M; Sulzer D
    J Neurochem; 1996 Feb; 66(2):629-36. PubMed ID: 8592133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.