BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 8592199)

  • 1. Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig.
    Ris L; de Waele C; Serafin M; Vidal PP; Godaux E
    J Neurophysiol; 1995 Nov; 74(5):2087-99. PubMed ID: 8592199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig.
    Ris L; Godaux E
    J Neurophysiol; 1998 Nov; 80(5):2352-67. PubMed ID: 9819248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociations between behavioural recovery and restoration of vestibular activity in the unilabyrinthectomized guinea-pig.
    Ris L; Capron B; de Waele C; Vidal PP; Godaux E
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):509-22. PubMed ID: 9147334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medical vestibular nucleus.
    Cheron G; Escudero M; Godaux E
    J Neurophysiol; 1996 Sep; 76(3):1759-74. PubMed ID: 8890290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. II. Prepositus hypoglossal nucleus.
    Escudero M; Cheron G; Godaux E
    J Neurophysiol; 1996 Sep; 76(3):1775-85. PubMed ID: 8890291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy.
    Smith PF; Curthoys IS
    Brain Res; 1988 Mar; 444(2):308-19. PubMed ID: 3359298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy.
    Smith PF; Curthoys IS
    Brain Res; 1988 Mar; 444(2):295-307. PubMed ID: 3359297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons.
    Kitama T; Ohki Y; Shimazu H; Tanaka M; Yoshida K
    J Neurophysiol; 1995 Jul; 74(1):273-87. PubMed ID: 7472330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations.
    Vibert N; Babalian A; Serafin M; Gasc JP; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 93(2):413-32. PubMed ID: 10465424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal activity in the guinea pig medial vestibular nucleus in vitro following chronic unilateral labyrinthectomy.
    Darlington CL; Smith PF; Hubbard JI
    Neurosci Lett; 1989 Oct; 105(1-2):143-8. PubMed ID: 2485877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy.
    Yamanaka T; Him A; Cameron SA; Dutia MB
    J Physiol; 2000 Mar; 523 Pt 2(Pt 2):413-24. PubMed ID: 10699085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of non-eye movement central vestibular neurons to sinusoidal horizontal translation in compensated macaques after unilateral labyrinthectomy.
    Newlands SD; Lin N; Wei M
    J Neurophysiol; 2014 Jul; 112(1):9-21. PubMed ID: 24717349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey.
    Gardner EP; Fuchs AF
    J Neurophysiol; 1975 May; 38(3):627-49. PubMed ID: 1079240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of superior vestibular nucleus flocculus target neurons in the squirrel monkey. I. General properties in comparison with flocculus projecting neurons.
    Zhang Y; Partsalis AM; Highstein SM
    J Neurophysiol; 1995 Jun; 73(6):2261-78. PubMed ID: 7666137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of ACTH-(4-10) on medial vestibular nucleus neurons in brainstem slices from labyrinthine-intact and compensated guinea pigs.
    Darlington CL; Smith PF; Gilchrist DP
    Neurosci Lett; 1992 Sep; 145(1):97-9. PubMed ID: 1334243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central compensation of vestibular deficits. IV. Responses of lateral vestibular neurons to neck rotation after labyrinth deafferentation.
    Xerri C; Gianni S; Manzoni D; Pompeiano O
    J Neurophysiol; 1985 Oct; 54(4):1006-25. PubMed ID: 3877791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of central vestibular neurons to sinusoidal yaw rotation in compensated macaques after unilateral labyrinthectomy.
    Newlands SD; Wei M
    J Neurophysiol; 2013 Oct; 110(8):1822-36. PubMed ID: 23864379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques.
    McFarland JL; Fuchs AF
    J Neurophysiol; 1992 Jul; 68(1):319-32. PubMed ID: 1517825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of the pacemaker activity of vestibular neurons in brainstem slices during vestibular compensation in the guinea pig.
    Ris L; Capron B; Vibert N; Vidal PP; Godaux E
    Eur J Neurosci; 2001 Jun; 13(12):2234-40. PubMed ID: 11454026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of non-eye-movement central vestibular neurons to sinusoidal yaw rotation in compensated macaques after unilateral semicircular canal plugging.
    Newlands SD; Wei M; Morgan D; Luan H
    J Neurophysiol; 2016 Oct; 116(4):1871-1884. PubMed ID: 27489364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.