These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 8592272)

  • 1. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development.
    Sawin-McCormack EP; Sokolowski MB; Campos AR
    J Neurogenet; 1995 Nov; 10(2):119-35. PubMed ID: 8592272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of serotonergic neurons in the Drosophila larval response to light.
    Rodriguez Moncalvo VG; Campos AR
    BMC Neurosci; 2009 Jun; 10():66. PubMed ID: 19549295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Switch in Thermal Preference in Drosophila Larvae Depends on Multiple Rhodopsins.
    Sokabe T; Chen HC; Luo J; Montell C
    Cell Rep; 2016 Oct; 17(2):336-344. PubMed ID: 27705783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlated responses to selection for faster development and early reproduction in Drosophila: the evolution of larval traits.
    Prasad NG; Shakarad M; Anitha D; Rajamani M; Joshi A
    Evolution; 2001 Jul; 55(7):1363-72. PubMed ID: 11525460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age- and Wavelength-Dependency of
    Humberg TH; Sprecher SG
    Front Behav Neurosci; 2017; 11():66. PubMed ID: 28473759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light Spot-Based Assay for Analysis of Drosophila Larval Phototaxis.
    Sun Y; Zhou P; Zhao Q; Gong Z
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tamas gene, identified as a mutation that disrupts larval behavior in Drosophila melanogaster, codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-gamma125).
    Iyengar B; Roote J; Campos AR
    Genetics; 1999 Dec; 153(4):1809-24. PubMed ID: 10581287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory mechanisms controlling the timing of larval developmental and behavioral transitions require the Drosophila DEG/ENaC subunit, Pickpocket1.
    Ainsley JA; Kim MJ; Wegman LJ; Pettus JM; Johnson WA
    Dev Biol; 2008 Oct; 322(1):46-55. PubMed ID: 18674528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecdysteroids during the third larval instar in 1(3)ecd-1ts, a temperature-sensitive mutant of Drosophila melanogaster.
    Berreur P; Porcheron P; Moriniere M; Berreur-Bonnenfant J; Belinski-Deutsch S; Busson D; Lamour-Audit C
    Gen Comp Endocrinol; 1984 Apr; 54(1):76-84. PubMed ID: 6427061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions.
    Busto M; Iyengar B; Campos AR
    J Neurosci; 1999 May; 19(9):3337-44. PubMed ID: 10212293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal development of the locomotor activity in yellow larvae of Drosophila: a cuticular defect?
    Inestrosa NC; Sunkel CE; Arriagada J; Garrido J; Godoy-Herrera R
    Genetica; 1996 Mar; 97(2):205-10. PubMed ID: 8901139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a gene, Desiccate, contributing to desiccation resistance in Drosophila melanogaster.
    Kawano T; Shimoda M; Matsumoto H; Ryuda M; Tsuzuki S; Hayakawa Y
    J Biol Chem; 2010 Dec; 285(50):38889-97. PubMed ID: 20937803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Larval competition in Drosophila melanogaster. I. Estimation of larval growth parameters.
    de Miranda JR; Eggleston P
    Heredity (Edinb); 1988 Apr; 60 ( Pt 2)():205-12. PubMed ID: 3130339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae.
    Rajamohan A; Sinclair BJ
    J Insect Physiol; 2008 Apr; 54(4):708-18. PubMed ID: 18342328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental analysis of Ganaspis xanthopoda, a larval parasitoid of Drosophila melanogaster.
    Melk JP; Govind S
    J Exp Biol; 1999 Jul; 202(Pt 14):1885-96. PubMed ID: 10377270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the larval foraging gene affect adult locomotory behavior after feeding in Drosophila melanogaster.
    Pereira HS; Sokolowski MB
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5044-6. PubMed ID: 8506349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated method to assay locomotor activity in third instar Drosophila melanogaster larvae.
    Graham S; Rogers RP; Alper RH
    J Pharmacol Toxicol Methods; 2016; 77():76-80. PubMed ID: 26554339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity differences displayed by Drosophila melanogaster larvae of different ages to the toxic effects of growth on media containing aflatoxin B1.
    Chinnici JP; Erlanger L; Charnock M; Jones M; Stein J
    Chem Biol Interact; 1979 Mar; 24(3):373-80. PubMed ID: 106976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The foraging locus: behavioral tests for normal muscle movement in rover and sitter Drosophila melanogaster larvae.
    Sokolowski MB; Hansell KP
    Genetica; 1992; 85(3):205-9. PubMed ID: 1521800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental arrest and ecdysteroid deficiency resulting from mutations at the dre4 locus of Drosophila.
    Sliter TJ; Gilbert LI
    Genetics; 1992 Mar; 130(3):555-68. PubMed ID: 1551577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.