These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8592307)

  • 1. Transitions between two different motor patterns in Xenopus embryos.
    Green CS; Soffe SR
    J Comp Physiol A; 1996 Feb; 178(2):279-91. PubMed ID: 8592307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor patterns for two distinct rhythmic behaviors evoked by excitatory amino acid agonists in the Xenopus embryo spinal cord.
    Soffe SR
    J Neurophysiol; 1996 May; 75(5):1815-25. PubMed ID: 8734582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrally generated rhythmic and non-rhythmic behavioural responses in Rana temporaria embryos.
    Soffe SR
    J Exp Biol; 1991 Mar; 156():81-99. PubMed ID: 2051140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neuromuscular basis of rhythmic struggling movements in embryos of Xenopus laevis.
    Kahn JA; Roberts A
    J Exp Biol; 1982 Aug; 99():197-205. PubMed ID: 7130898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triggering and gating of motor responses by sensory stimulation: behavioural selection in Xenopus embryos.
    Soffe SR
    Proc Biol Sci; 1991 Dec; 246(1317):197-203. PubMed ID: 1686085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central nervous origin of the swimming motor pattern in embryos of Xenopus laevis.
    Kahn JA; Roberts A
    J Exp Biol; 1982 Aug; 99():185-96. PubMed ID: 7130897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiments on the central pattern generator for swimming in amphibian embryos.
    Kahn JA; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):229-43. PubMed ID: 17506220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pattern of sensory discharge can determine the motor response in young Xenopus tadpoles.
    Soffe SR
    J Comp Physiol A; 1997 Jun; 180(6):711-5. PubMed ID: 9190047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus laevis.
    von Uckermann G; Lambert FM; Combes D; Straka H; Simmers J
    J Exp Biol; 2016 Apr; 219(Pt 8):1110-21. PubMed ID: 27103674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular recordings from spinal neurons during 'swimming' in paralysed amphibian embryos.
    Roberts A; Khan JA
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):213-28. PubMed ID: 17506219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal gradients in the spinal cord of Xenopus embryos and their possible role in coordination of swimming.
    Roberts A; Tunstall MJ
    Eur J Morphol; 1994 Aug; 32(2-4):176-84. PubMed ID: 7803164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of swimming rhythmicity by 5-hydroxytryptamine during post-embryonic development in Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1992 Nov; 250(1328):107-14. PubMed ID: 1361984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminergic modulation of glycine release in a spinal network controlling swimming in Xenopus laevis.
    McDearmid JR; Scrymgeour-Wedderburn JF; Sillar KT
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):111-7. PubMed ID: 9288679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1992 May; 12(5):1647-57. PubMed ID: 1578259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of rhythmic movements by purinergic neurotransmitters in frog embryos.
    Dale N; Gilday D
    Nature; 1996 Sep; 383(6597):259-63. PubMed ID: 8805702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.