These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 8592495)

  • 1. [Nonphosphorylating respiration as the mechanism preventing the formation of active forms of oxygen].
    Skulachev VP
    Mol Biol (Mosk); 1995; 29(6):1199-209. PubMed ID: 8592495
    [No Abstract]   [Full Text] [Related]  

  • 2. [Decrease in the intracellular concentration of O2 as a special function of the cellular respiratory system].
    Skulachev VP
    Biokhimiia; 1994 Dec; 59(12):1910-2. PubMed ID: 7873690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants.
    Skulachev VP
    Q Rev Biophys; 1996 May; 29(2):169-202. PubMed ID: 8870073
    [No Abstract]   [Full Text] [Related]  

  • 4. Mitochondria, oxygen free radicals, and apoptosis.
    Raha S; Robinson BH
    Am J Med Genet; 2001; 106(1):62-70. PubMed ID: 11579426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation.
    Gille L; Nohl H
    Arch Biochem Biophys; 2001 Apr; 388(1):34-8. PubMed ID: 11361137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells.
    Psarra AM; Solakidi S; Sekeris CE
    Mol Cell Endocrinol; 2006 Feb; 246(1-2):21-33. PubMed ID: 16388892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The problem of in vivo transport of molecular oxygen through the mitochondrial membranes.
    Kulicki K; Lorenc R
    Folia Histochem Cytochem (Krakow); 1970; 8(1):99-100. PubMed ID: 4318067
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitochondrial dysfunction after aerobic exposure to the hypoxic cytotoxin tirapazamine.
    Wouters BG; Delahoussaye YM; Evans JW; Birrell GW; Dorie MJ; Wang J; MacDermed D; Chiu RK; Brown JM
    Cancer Res; 2001 Jan; 61(1):145-52. PubMed ID: 11196153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of photodynamic action on respiration in nonphosphorylating mitochondria.
    Salet C; Moreno G; Ricchelli F
    Arch Biochem Biophys; 1998 Oct; 358(2):257-63. PubMed ID: 9784237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of superoxide production in mitochondria from maize mesocotyls.
    Camacho A; Moreno-Sanchez R; Bernal-Lugo I
    FEBS Lett; 2004 Jul; 570(1-3):52-6. PubMed ID: 15251438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sites of superoxide anion generation in higher plant mitochondria.
    Rich PR; Bonner WD
    Arch Biochem Biophys; 1978 May; 188(1):206-13. PubMed ID: 209742
    [No Abstract]   [Full Text] [Related]  

  • 12. Bcl-2 inhibits apoptosis induced by mitochondrial uncoupling but does not prevent mitochondrial transmembrane depolarization.
    Armstrong JS; Steinauer KK; French J; Killoran PL; Walleczek J; Kochanski J; Knox SJ
    Exp Cell Res; 2001 Jan; 262(2):170-9. PubMed ID: 11139341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics of mitochondrial electron transport chain in regulating oxygen sensing.
    Bell EL; Chandel NS
    Methods Enzymol; 2007; 435():447-61. PubMed ID: 17998068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress as a necessary factor in room temperature-induced apoptosis of HL-60 cells.
    Shimura M; Osawa Y; Yuo A; Hatake K; Takaku F; Ishizaka Y
    J Leukoc Biol; 2000 Jul; 68(1):87-96. PubMed ID: 10914494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemic preconditioning preserves proton leakage from mitochondrial membranes but not oxidative phosphorylation during heart reperfusion.
    Muscari C; Bonafè F; Gamberini C; Giordano E; Lenaz G; Caldarera CM
    Cell Biochem Funct; 2006; 24(6):511-8. PubMed ID: 16245370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life time-circadian clocks, mitochondria and metabolism.
    Langmesser S; Albrecht U
    Chronobiol Int; 2006; 23(1-2):151-7. PubMed ID: 16687289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum.
    Alzate JF; Arias AA; Moreno-Mateos D; Alvarez-Barrientos A; Jiménez-Ruiz A
    Mol Biochem Parasitol; 2007 Apr; 152(2):192-202. PubMed ID: 17300844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.