BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8592836)

  • 1. In vitro and in vivo evaluation of potential aluminum chelators.
    Graff L; Muller G; Burnel D
    Vet Hum Toxicol; 1995 Oct; 37(5):455-61. PubMed ID: 8592836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo comparative studies on chelation of aluminum by some polyaminocarboxylic acids.
    Graff L; Muller G; Burnel D
    Res Commun Mol Pathol Pharmacol; 1995 Jun; 88(3):271-92. PubMed ID: 8564384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical evaluation of HBED/Fe(3+) and the novel HJB/Fe(3+) chelates as fertilizers to alleviate iron chlorosis.
    López-Rayo S; Hernández D; Lucena JJ
    J Agric Food Chem; 2009 Sep; 57(18):8504-13. PubMed ID: 19689133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of potential aluminum chelators in vitro by aluminum solubilization ability, aluminum mobilization from transferrin and the octanol/aqueous distribution of the chelators and their complexes with aluminum.
    Yokel RA; Datta AK; Jackson EG
    J Pharmacol Exp Ther; 1991 Apr; 257(1):100-6. PubMed ID: 2019981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 3-hydroxypyridin-4-ones more effectively chelate aluminum in a rabbit model of aluminum intoxication than does desferrioxamine.
    Yokel RA; Meurer KA; Skinner TL; Fredenburg AM
    Drug Metab Dispos; 1996 Jan; 24(1):105-11. PubMed ID: 8825197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of calcium and zinc complexes of aminopolycarbonic acids on excretion and distribution of cadmium].
    Eybl V; Sýkora J; Mertl F
    Acta Biol Med Ger; 1973; 30(4):515-25. PubMed ID: 4199140
    [No Abstract]   [Full Text] [Related]  

  • 7. 1,6-Dimethyl-4-hydroxy-3-pyridinecarboxylic acid and 4-hydroxy-2-methyl-3-pyridinecarboxylic acid as new possible chelating agents for iron and aluminium.
    Dean A; Ferlin MG; Brun P; Castagliuolo I; Yokel RA; Badocco D; Pastore P; Venzo A; Bombi GG; Di Marco VB
    Dalton Trans; 2009 Mar; (10):1815-24. PubMed ID: 19240917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of potential aluminum chelators in an octanol/aqueous system and in the aluminum-loaded rabbit.
    Yokel RA; Kostenbauder HB
    Toxicol Appl Pharmacol; 1987 Nov; 91(2):281-94. PubMed ID: 3672527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention and treatment of aluminum toxicity including chelation therapy: status and research needs.
    Yokel RA; Ackrill P; Burgess E; Day JP; Domingo JL; Flaten TP; Savory J
    J Toxicol Environ Health; 1996 Aug; 48(6):667-83. PubMed ID: 8772805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of exposure to aluminum on some metal elements contents in hippocampus of rat].
    Yang J; Jia Y; Zhao R; Jin N; Chen J
    Zhonghua Yu Fang Yi Xue Za Zhi; 2002 Jul; 36(4):247-9. PubMed ID: 12411205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute aluminium intoxication: a study of the efficacy of several antidotal treatments in mice.
    Domingo JL; Llobet JM; Gómez M; Corbella J
    Res Commun Chem Pathol Pharmacol; 1986 Jul; 53(1):93-104. PubMed ID: 3749610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of the Ca-complexes of aminopolycarboxylic acids on the excretion and distribution of zinc].
    Eybl V; Sýkora J; Mertl F
    Z Gesamte Exp Med Einschl Exp Chir; 1970 Aug; 152(4):274-83. PubMed ID: 4995887
    [No Abstract]   [Full Text] [Related]  

  • 14. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc.
    Waters RS; Bryden NA; Patterson KY; Veillon C; Anderson RA
    Biol Trace Elem Res; 2001 Dec; 83(3):207-21. PubMed ID: 11794513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of 2-methyl-3-hydroxy-4-pyridinecarboxylic acid as a possible chelating agent for iron and aluminium.
    Dean A; Ferlin MG; Brun P; Castagliuolo I; Badocco D; Pastore P; Venzo A; Bombi GG; Di Marco VB
    Dalton Trans; 2008 Apr; (13):1689-97. PubMed ID: 18354766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative aluminium mobilizing actions of several chelators in aluminium-loaded uraemic rats.
    Gómez M; Domingo JL; del Castillo D; Llobet JM; Corbella J
    Hum Exp Toxicol; 1994 Feb; 13(2):135-9. PubMed ID: 7908811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical speciation of ethylenediamine-N-(o-hydroxyphenylacetic)-N'-(p-hydroxyphenylacetic) acid (o,p-EDDHA) in agronomic conditions.
    Yunta F; García-Marco S; Lucena JJ
    J Agric Food Chem; 2003 Aug; 51(18):5391-9. PubMed ID: 12926888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the antidotal efficacy of polyamincarboxylic acids (CDTA and DTPA) with time after acute zinc poisoning.
    Llobet JM; Colomina MT; Domingo JL; Corbella J
    Vet Hum Toxicol; 1989 Feb; 31(1):25-8. PubMed ID: 2496518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of humic substances and phenolic compounds on the in vitro toxicity of aluminium.
    Sauvant MP; Pepin D; Guillot J
    Ecotoxicol Environ Saf; 1999 Sep; 44(1):47-55. PubMed ID: 10499988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.