BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8593079)

  • 21. Comparative toxicity and structure-activity in Chlorella and Tetrahymena: monosubstituted phenols.
    Jaworska JS; Schultz TW
    Bull Environ Contam Toxicol; 1991 Jul; 47(1):57-62. PubMed ID: 1932865
    [No Abstract]   [Full Text] [Related]  

  • 22. Quantitative structure-activity study of the toxicity of benzonitriles to the ciliate Tetrahymena pyriformis.
    Cronin MT; Bryant SE; Dearden JC; Schultz TW
    SAR QSAR Environ Res; 1995; 3(1):1-13. PubMed ID: 7497338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative QSAR studies on toxicity of phenol derivatives using quantum topological molecular similarity indices.
    Hemmateenejad B; Mehdipour AR; Miri R; Shamsipur M
    Chem Biol Drug Des; 2010 May; 75(5):521-31. PubMed ID: 20486939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two QSAR models for predicting the toxicity of chemicals towards
    Jia Q; Wang S; Yu M; Wang Q; Yan F
    SAR QSAR Environ Res; 2023 Feb; 34(2):147-161. PubMed ID: 36749040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biopartitioning micellar chromatography: an alternative high-throughput method for assessing the ecotoxicity of anilines and phenols.
    Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 852(1-2):353-61. PubMed ID: 17347057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of polychlorinated phenols and evaluation of their toxicity, biodegradation and bioconcentration using three-dimensional quantitative structure-activity relationship models.
    Tong L; Guo L; Lv X; Li Y
    J Mol Graph Model; 2017 Jan; 71():1-12. PubMed ID: 27825025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression.
    Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis.
    Castillo-Garit JA; Casañola-Martin GM; Barigye SJ; Pham-The H; Torrens F; Torreblanca A
    SAR QSAR Environ Res; 2017 Sep; 28(9):735-747. PubMed ID: 29022372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic descriptors derived from density functional theory calculations in prediction of aquatic toxicity.
    Smiesko M; Benfenati E
    J Chem Inf Model; 2005; 45(2):379-85. PubMed ID: 15807503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel QSAR approach for estimating toxicity of phenols.
    Schultz TW; Bearden AP; Jaworska JS
    SAR QSAR Environ Res; 1996; 5(2):99-112. PubMed ID: 8751817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis.
    Schultz TW; Cronin MT; Netzeva TI; Aptula AO
    Chem Res Toxicol; 2002 Dec; 15(12):1602-9. PubMed ID: 12482243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative relationships of structure-activity and volume fraction for selected nonpolar and polar narcotic chemicals.
    Jaworska JS; Schultz TW
    SAR QSAR Environ Res; 1993; 1(1):3-19. PubMed ID: 8790624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative structure-activity relationships for the toxicity to the tadpole Rana japonica of selected phenols.
    Wang X; Dong Y; Xu S; Wang L; Han S
    Bull Environ Contam Toxicol; 2000 Jun; 64(6):859-65. PubMed ID: 10856344
    [No Abstract]   [Full Text] [Related]  

  • 34. Predictive correlations for the toxicity of alkyl- and halogen- substituted phenols.
    Schultz TW; Riggin GW
    Toxicol Lett; 1985 Apr; 25(1):47-54. PubMed ID: 3922089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative QSAR study of phenol derivatives with the help of density functional theory.
    Pasha FA; Srivastava HK; Singh PP
    Bioorg Med Chem; 2005 Dec; 13(24):6823-9. PubMed ID: 16169734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Tetrahymena pyriformis--a cell test system for environmental medicine. The effect of harmful substances on the cell morphology of Tetrahymena pyriformis].
    Müller A; Herbarth O
    Zentralbl Hyg Umweltmed; 1994 Oct; 196(3):227-36. PubMed ID: 7848498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals.
    Schultz TW; Netzeva TI; Roberts DW; Cronin MT
    Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quantitative structure--activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks.
    Burden FR; Winkler DA
    Chem Res Toxicol; 2000 Jun; 13(6):436-40. PubMed ID: 10858316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-activity relationships for mono alkylated or halogenated phenols.
    Schultz TW; Cajina-Quezada M
    Toxicol Lett; 1987 Jul; 37(2):121-30. PubMed ID: 3111016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.