These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 8593271)
1. Gramicidin channel-induced lipid membrane deformation energy: influence of chain length and boundary conditions. Ring A Biochim Biophys Acta; 1996 Jan; 1278(2):147-59. PubMed ID: 8593271 [TBL] [Abstract][Full Text] [Related]
2. Influence of ion occupancy and membrane deformation on gramicidin A channel stability in lipid membranes. Ring A Biophys J; 1992 May; 61(5):1306-15. PubMed ID: 1376157 [TBL] [Abstract][Full Text] [Related]
3. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Huang HW Biophys J; 1986 Dec; 50(6):1061-70. PubMed ID: 2432948 [TBL] [Abstract][Full Text] [Related]
4. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Harroun TA; Heller WT; Weiss TM; Yang L; Huang HW Biophys J; 1999 Jun; 76(6):3176-85. PubMed ID: 10354442 [TBL] [Abstract][Full Text] [Related]
5. Stability of an ion channel in lipid bilayers: implicit solvent model calculations with gramicidin. Bransburg-Zabary S; Kessel A; Gutman M; Ben-Tal N Biochemistry; 2002 Jun; 41(22):6946-54. PubMed ID: 12033927 [TBL] [Abstract][Full Text] [Related]
6. Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Helfrich P; Jakobsson E Biophys J; 1990 May; 57(5):1075-84. PubMed ID: 1692748 [TBL] [Abstract][Full Text] [Related]
7. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Lundbaek JA; Andersen OS Biophys J; 1999 Feb; 76(2):889-95. PubMed ID: 9929490 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobic coupling of lipid bilayer energetics to channel function. Goforth RL; Chi AK; Greathouse DV; Providence LL; Koeppe RE; Andersen OS J Gen Physiol; 2003 May; 121(5):477-93. PubMed ID: 12719487 [TBL] [Abstract][Full Text] [Related]
9. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. Chiu SW; Subramaniam S; Jakobsson E Biophys J; 1999 Apr; 76(4):1929-38. PubMed ID: 10096891 [TBL] [Abstract][Full Text] [Related]
10. Gramicidin channel kinetics under tension. Goulian M; Mesquita ON; Fygenson DK; Nielsen C; Andersen OS; Libchaber A Biophys J; 1998 Jan; 74(1):328-37. PubMed ID: 9449333 [TBL] [Abstract][Full Text] [Related]
11. Single-molecule methods for monitoring changes in bilayer elastic properties. Andersen OS; Bruno MJ; Sun H; Koeppe RE Methods Mol Biol; 2007; 400():543-70. PubMed ID: 17951759 [TBL] [Abstract][Full Text] [Related]
12. Energetics of inclusion-induced bilayer deformations. Nielsen C; Goulian M; Andersen OS Biophys J; 1998 Apr; 74(4):1966-83. PubMed ID: 9545056 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime. Ring A; Sandblom J Biophys J; 1988 Apr; 53(4):541-8. PubMed ID: 2454676 [TBL] [Abstract][Full Text] [Related]
14. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension]. Markin VS; Shlenskiĭ VG; Saimon SA; Benos DD; Ismailov II Biofizika; 2006; 51(6):1014-8. PubMed ID: 17175912 [TBL] [Abstract][Full Text] [Related]
15. The dependence of the conductance and lifetime of gramicidin channels on the thickness and tension of lipid bilayers. Rudnev VS; Ermishkin LN; Fonina LA; Rovin YuG Biochim Biophys Acta; 1981 Mar; 642(1):196-202. PubMed ID: 6164394 [TBL] [Abstract][Full Text] [Related]
16. Gramicidin A Channel Formation Induces Local Lipid Redistribution I: Experiment and Simulation. Beaven AH; Maer AM; Sodt AJ; Rui H; Pastor RW; Andersen OS; Im W Biophys J; 2017 Mar; 112(6):1185-1197. PubMed ID: 28355546 [TBL] [Abstract][Full Text] [Related]
17. The gramicidin ion channel: a model membrane protein. Kelkar DA; Chattopadhyay A Biochim Biophys Acta; 2007 Sep; 1768(9):2011-25. PubMed ID: 17572379 [TBL] [Abstract][Full Text] [Related]
18. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch. Basu I; Chattopadhyay A; Mukhopadhyay C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):328-38. PubMed ID: 24125683 [TBL] [Abstract][Full Text] [Related]
19. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels. Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178 [TBL] [Abstract][Full Text] [Related]
20. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Busath DD; Thulin CD; Hendershot RW; Phillips LR; Maughan P; Cole CD; Bingham NC; Morrison S; Baird LC; Hendershot RJ; Cotten M; Cross TA Biophys J; 1998 Dec; 75(6):2830-44. PubMed ID: 9826605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]