These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 8593296)
1. Rod and cone components in the dog electroretinogram during and after dark adaptation. Yanase J; Ogawa H; Ohtsuka H J Vet Med Sci; 1995 Oct; 57(5):877-81. PubMed ID: 8593296 [TBL] [Abstract][Full Text] [Related]
2. [Adaptational changes in cone electroretinograms in man]. Iijima H; Yamaguchi S Nippon Ganka Gakkai Zasshi; 1990 Nov; 94(11):987-92. PubMed ID: 2075875 [TBL] [Abstract][Full Text] [Related]
3. Study of blue and red flash in dark-adapted electroretinogram. Lim SH; Ohn YH Korean J Ophthalmol; 2005 Jun; 19(2):106-11. PubMed ID: 15988925 [TBL] [Abstract][Full Text] [Related]
4. The ERG of the beagle dog: evidence associating a post b-wave negativity with the Tapetum lucidum. Rosolen SG; Chalier C; Rigaudière F; Lachapelle P Doc Ophthalmol; 2005; 110(2-3):145-53. PubMed ID: 16328922 [TBL] [Abstract][Full Text] [Related]
9. Rod and cone ERGs and their oscillatory potentials. King-Smith PE; Loffing DH; Jones R Invest Ophthalmol Vis Sci; 1986 Feb; 27(2):270-3. PubMed ID: 3943952 [TBL] [Abstract][Full Text] [Related]
10. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats. Sugawara T; Sieving PA; Bush RA Exp Eye Res; 2000 May; 70(5):693-705. PubMed ID: 10870528 [TBL] [Abstract][Full Text] [Related]
11. [Isolation of rod- and cone-mediated c-waves in the chicken ERG using monochromatic stimuli]. Fukuda A Nippon Ganka Gakkai Zasshi; 1989 May; 93(5):599-609. PubMed ID: 2801363 [TBL] [Abstract][Full Text] [Related]
12. ISCEV extended protocol for the dark-adapted red flash ERG. Thompson DA; Fujinami K; Perlman I; Hamilton R; Robson AG Doc Ophthalmol; 2018 Jun; 136(3):191-197. PubMed ID: 29934801 [TBL] [Abstract][Full Text] [Related]
13. ERG findings in three hypothyroid adult dogs with and without levothyroxine treatment. Durieux P; Rigaudière F; LeGargasson JF; Rosolen SG Vet Ophthalmol; 2008; 11(6):406-11. PubMed ID: 19046283 [TBL] [Abstract][Full Text] [Related]
14. The d-wave of the rod electroretinogram of rat originates in the cone pathway. Naarendorp F; Williams GE Vis Neurosci; 1999; 16(1):91-105. PubMed ID: 10022481 [TBL] [Abstract][Full Text] [Related]
15. The effect of age on human cone and rod ganzfeld electroretinograms. Weleber RG Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):392-9. PubMed ID: 7203883 [TBL] [Abstract][Full Text] [Related]
16. Procedures for routine clinical electroretinography (ERG) in dogs. Schaeppi U; Liverani F Agents Actions; 1977 Sep; 7(3):347-51. PubMed ID: 596319 [TBL] [Abstract][Full Text] [Related]
17. [Oscillating potentials on the B-wave of the ERG in the dog]. Spiess BM; Leber-Zürcher AC Schweiz Arch Tierheilkd; 1992; 134(9):431-43. PubMed ID: 1455215 [TBL] [Abstract][Full Text] [Related]
18. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys. Kinoshita J; Iwata N; Kimotsuki T; Yasuda M Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):881-92. PubMed ID: 24436189 [TBL] [Abstract][Full Text] [Related]
19. Changes in oscillatory potentials in the canine electroretinogram during dark adaptation. Sims MH; Brooks DE Am J Vet Res; 1990 Oct; 51(10):1580-6. PubMed ID: 2240780 [TBL] [Abstract][Full Text] [Related]
20. Scotopic and photopic components of the rat electroetinogram. Green DG J Physiol; 1973 Feb; 228(3):781-97. PubMed ID: 4702156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]