These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 859342)

  • 21. II. Transient phase of two-substrate enzyme systems.
    Galvez J; Varon R; Canovas FG
    J Theor Biol; 1981 Mar; 89(1):19-35. PubMed ID: 7278306
    [No Abstract]   [Full Text] [Related]  

  • 22. A Petri net approach to the study of persistence in chemical reaction networks.
    Angeli D; De Leenheer P; Sontag ED
    Math Biosci; 2007 Dec; 210(2):598-618. PubMed ID: 17869313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel method for determining kinetic parameters of dissociating enzyme systems.
    Wang ZX
    Anal Biochem; 1998 Nov; 264(1):8-21. PubMed ID: 9784182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient state kinetics tutorial using the kinetics simulation program, KINSIM.
    Wachsstock DH; Pollard TD
    Biophys J; 1994 Sep; 67(3):1260-73. PubMed ID: 7811941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Kinetic manifestations of conformational changes in enzymes].
    Gol'dshteĭn BN; Livshits MA; Vol'kenshteĭn MV
    Mol Biol; 1974; 8(5):784-91. PubMed ID: 4469585
    [No Abstract]   [Full Text] [Related]  

  • 26. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. I. Calculation of rate constant in the case of motionless enzyme molecule without nonspecific intermolecular forces.
    Somogyi B; Damjanovich S
    Acta Biochim Biophys Acad Sci Hung; 1973; 8(3):153-60. PubMed ID: 4784598
    [No Abstract]   [Full Text] [Related]  

  • 28. Solvent isotope effects of enzyme systems.
    Schowen KB; Schowen RL
    Methods Enzymol; 1982; 87():551-606. PubMed ID: 6294457
    [No Abstract]   [Full Text] [Related]  

  • 29. Conformational-relaxation models of single-enzyme kinetics.
    Lerch HP; Mikhailov AS; Hess B
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15410-5. PubMed ID: 12429859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The theoretical analysis of kinetic behaviour of "hysteretic" allosteric enzymes. IV. Kinetics of dissociation-association processes of allosteric enzymes.
    Kurganov BI
    J Theor Biol; 1977 Oct; 68(4):521-43. PubMed ID: 21997
    [No Abstract]   [Full Text] [Related]  

  • 31. Evolution of regulatory enzymes towards functional simplicity.
    Ricard J; Noat G
    J Theor Biol; 1982 Jun; 96(3):347-65. PubMed ID: 7121033
    [No Abstract]   [Full Text] [Related]  

  • 32. An analysis of non-linear Eadie-Hofstee-Scatchard representations of ligand-binding and initial-rate data for allosteric and other complex enzyme mechanisms.
    Childs RE; Bardsley WG
    J Theor Biol; 1976 Nov; 63(1):1-18. PubMed ID: 1003986
    [No Abstract]   [Full Text] [Related]  

  • 33. Transient enzyme kinetics: graph-theoretic approach.
    Goldstein BN
    Biophys Chem; 2009 May; 141(2-3):193-7. PubMed ID: 19233540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer program for the kinetic equations of enzyme reactions. The case in which more than one enzyme species is present at the onset of the reaction.
    Varón R; Havsteen BH; García M; García-Canóvas F; Tudela J
    Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):91-7. PubMed ID: 1883344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fractal mechanisms for the allosteric effects of proteins and enzymes.
    Li HQ; Chen SH; Zhao HM
    Biophys J; 1990 Nov; 58(5):1313-20. PubMed ID: 2291947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of protein-modification reactions. Determination of the fractional concentration of enzyme protein groups, or group reactivities, essential for catalytic function.
    Rakitzis ET; Malliopoulou TB
    Biochem J; 1986 Jul; 237(2):589-91. PubMed ID: 3800902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The tree graphs theory for enzymatic reactions: a theorem for the reactions among the non-enzymatic species.
    Solimano F; Beretta E; Piatti E
    J Theor Biol; 1977 Feb; 64(3):401-12. PubMed ID: 839812
    [No Abstract]   [Full Text] [Related]  

  • 38. Structural bases of hydrogen tunneling in enzymes: progress and puzzles.
    Liang ZX; Klinman JP
    Curr Opin Struct Biol; 2004 Dec; 14(6):648-55. PubMed ID: 15582387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. II. Effect of intermolecular forces on the parameters describing the translational diffusion motion of a particle.
    Somogyi B
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):175-84. PubMed ID: 4419763
    [No Abstract]   [Full Text] [Related]  

  • 40. [Description of the kinetics of allosteric polymeric enzymes with 2 ligands based on the generalized Ising model].
    Cherepanov DA
    Biofizika; 1988; 33(1):41-5. PubMed ID: 3370238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.