BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8593747)

  • 21. Biochemical evidence that L-glutamate is a neurotransmitter of primary vagal afferent nerve fibers.
    Perrone MH
    Brain Res; 1981 Dec; 230(1-2):283-93. PubMed ID: 6172183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurochemical phenotype of vagal afferent neurons activated to express C-FOS in response to luminal stimulation in the rat.
    Wu XY; Zhu JX; Gao J; Owyang C; Li Y
    Neuroscience; 2005; 130(3):757-67. PubMed ID: 15590158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Release of glutamate in the nucleus tractus solitarii in response to baroreflex activation in rats.
    Ohta H; Li X; Talman WT
    Neuroscience; 1996 Sep; 74(1):29-37. PubMed ID: 8843075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G757-63. PubMed ID: 18202107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcellular localization of neuronal nitric oxide synthase in the rat nucleus of the solitary tract in relation to vagal afferent inputs.
    Atkinson L; Batten TF; Corbett EK; Sinfield JK; Deuchars J
    Neuroscience; 2003; 118(1):115-22. PubMed ID: 12676143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 5-HT activates vagal afferent cell bodies in vivo: role of 5-HT2 and 5-HT3 receptors.
    Lacolley P; Owen JR; Sandock K; Lewis TH; Bates JN; Robertson TP; Lewis SJ
    Neuroscience; 2006 Nov; 143(1):273-87. PubMed ID: 17029799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Presynaptic or postsynaptic location of receptors for angiotensin II and substance P in the medial solitary tract nucleus.
    Qu L; McQueeney AJ; Barnes KL
    J Neurophysiol; 1996 Jun; 75(6):2220-8. PubMed ID: 8793736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vagal afferent control of opioidergic effects in rat brainstem circuits.
    Browning KN; Zheng Z; Gettys TW; Travagli RA
    J Physiol; 2006 Sep; 575(Pt 3):761-76. PubMed ID: 16825311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the origin of extracellular glutamate levels monitored in the basal ganglia of the rat by in vivo microdialysis.
    Herrera-Marschitz M; You ZB; Goiny M; Meana JJ; Silveira R; Godukhin OV; Chen Y; Espinoza S; Pettersson E; Loidl CF; Lubec G; Andersson K; Nylander I; Terenius L; Ungerstedt U
    J Neurochem; 1996 Apr; 66(4):1726-35. PubMed ID: 8627331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitotoxin-induced degeneration of rat vagal afferent neurons.
    Lewis SJ; Verberne AJ; Louis CJ; Jarrott B; Beart PM; Louis WJ
    Neuroscience; 1990; 34(2):331-9. PubMed ID: 2333146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate release in the nucleus tractus solitarius induced by peripheral lipopolysaccharide and interleukin-1 beta.
    Mascarucci P; Perego C; Terrazzino S; De Simoni MG
    Neuroscience; 1998 Oct; 86(4):1285-90. PubMed ID: 9697133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional and chemical anatomy of the afferent vagal system.
    Berthoud HR; Neuhuber WL
    Auton Neurosci; 2000 Dec; 85(1-3):1-17. PubMed ID: 11189015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins.
    Dütsch M; Eichhorn U; Wörl J; Wank M; Berthoud HR; Neuhuber WL
    J Comp Neurol; 1998 Aug; 398(2):289-307. PubMed ID: 9700572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occipital artery injections of 5-HT may directly activate the cell bodies of vagal and glossopharyngeal afferent cell bodies in the rat.
    Lacolley P; Owen JR; Sandock K; Lewis TH; Bates JN; Robertson TP; Lewis SJ
    Neuroscience; 2006 Nov; 143(1):289-308. PubMed ID: 17029801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons.
    Page AJ; Young RL; Martin CM; Umaerus M; O'Donnell TA; Cooper NJ; Coldwell JR; Hulander M; Mattsson JP; Lehmann A; Blackshaw LA
    Gastroenterology; 2005 Feb; 128(2):402-10. PubMed ID: 15685551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycine-containing terminals in the rat dorsal vagal complex.
    Cassell MD; Roberts L; Talman WT
    Neuroscience; 1992 Oct; 50(4):907-20. PubMed ID: 1333062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis.
    Allchin RE; Batten TF; McWilliam PN; Vaughan PF
    Exp Physiol; 1994 Mar; 79(2):265-8. PubMed ID: 7911674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
    Berthoud HR; Powley TL
    J Comp Neurol; 1992 May; 319(2):261-76. PubMed ID: 1522247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunocytochemical characterization of rat brainstem neurons with vagal afferent input from the stomach challenged by acid or ammonia.
    Danzer M; Samberger C; Schicho R; Lippe IT; Holzer P
    Eur J Neurosci; 2004 Jan; 19(1):85-92. PubMed ID: 14750966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.