These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 8593955)

  • 21. Identification of nah-1 genes of the Pseudomonas putida naphthalene-degrading NPL-41 plasmid operon.
    Serebriiskaya TS; Lenets AA; Goldenkova IV; Kobets NS; Piruzian ES
    Mol Gen Mikrobiol Virusol; 1999; (4):33-6. PubMed ID: 10621937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aromatic hydrocarbon degradation patterns and catechol 2,3-dioxygenase genes in microbial cultures from deep anoxic hypersaline lakes in the eastern Mediterranean sea.
    Brusa T; Borin S; Ferrari F; Sorlini C; Corselli C; Daffonchio D
    Microbiol Res; 2001; 156(1):49-58. PubMed ID: 11372653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential regulation of lambda pL and pR promoters by a cI repressor in a broad-host-range thermoregulated plasmid marker system.
    Winstanley C; Morgan JA; Pickup RW; Jones JG; Saunders JR
    Appl Environ Microbiol; 1989 Apr; 55(4):771-7. PubMed ID: 2729979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of an OprL null mutant of Pseudomonas putida.
    Rodríguez-Herva JJ; Ramos JL
    J Bacteriol; 1996 Oct; 178(19):5836-40. PubMed ID: 8824639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities.
    Hodson RE; Dustman WA; Garg RP; Moran MA
    Appl Environ Microbiol; 1995 Nov; 61(11):4074-82. PubMed ID: 8526521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia].
    Vacca GS; Kiesel B; Wünsche L; Pucci OH
    Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Development of plasmid-based transgenic mice carrying with target gene xylE].
    Cao J; Chen J; Yin M; Cheng G; Huang J; Mao Y; Xu S
    Zhonghua Yu Fang Yi Xue Za Zhi; 1999 Jan; 33(1):13-5. PubMed ID: 11864447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene.
    Sørensen SJ; Sørensen AH; Hansen LH; Oregaard G; Veal D
    Curr Microbiol; 2003 Aug; 47(2):129-33. PubMed ID: 14506860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel family shuffling methods for the in vitro evolution of enzymes.
    Kikuchi M; Ohnishi K; Harayama S
    Gene; 1999 Aug; 236(1):159-67. PubMed ID: 10433977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Expression of xylE gene in Bacillus stearothermophilus].
    He XS; Shen RQ; Sheng ZJ
    Yi Chuan Xue Bao; 1990; 17(1):46-52. PubMed ID: 2372405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31.
    Tropel D; Meyer C; Armengaud J; Jouanneau Y
    Arch Microbiol; 2002 Apr; 177(4):345-51. PubMed ID: 11889489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a unique meta-cleavage pathway.
    Saint CP; McClure NC; Venables WA
    J Gen Microbiol; 1990 Apr; 136(4):615-25. PubMed ID: 2168927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New derivatives of TOL plasmid pWW0.
    Sarand I; Mäe A; Vilu R; Heinaru A
    J Gen Microbiol; 1993 Oct; 139(10):2379-85. PubMed ID: 8254307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmid inheritability and biomass production: comparison between free and immobilized cell cultures of Escherichia coli BZ18(pTG201) without selection pressure.
    de Taxis du Poët P; Dhulster P; Barbotin JN; Thomas D
    J Bacteriol; 1986 Mar; 165(3):871-7. PubMed ID: 3512527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow cytometry assay for the detection of single-copy DNA in human lymphocytes.
    Uno N; Kaku N; Morinaga Y; Hasegawa H; Yanagihara K
    Nucleic Acids Res; 2020 Sep; 48(15):e86. PubMed ID: 32544240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method to monitor DNA transfer during transfection.
    Johnson AL; Jurcisek JA; Trask OJ; Au JL
    AAPS PharmSci; 1999; 1(2):E6. PubMed ID: 11741202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved methods for in situ enzymatic amplification and detection of low copy number genes in bacteria.
    Jacobs D; Angles ML; Goodman AE; Neilan BA
    FEMS Microbiol Lett; 1997 Jul; 152(1):65-73. PubMed ID: 9228772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using light scatter signal to estimate bacterial biovolume by flow cytometry.
    Bouvier T; Troussellier M; Anzil A; Courties C; Servais P
    Cytometry; 2001 Jul; 44(3):188-94. PubMed ID: 11429769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria.
    Galbusera L; Bellement-Theroue G; Urchueguia A; Julou T; van Nimwegen E
    PLoS One; 2020; 15(10):e0240233. PubMed ID: 33045012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.