These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8594034)

  • 1. Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening.
    Perun ML; Gaver DP
    J Appl Physiol (1985); 1995 Nov; 79(5):1717-28. PubMed ID: 8594034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of surface tension and viscosity on airway reopening.
    Gaver DP; Samsel RW; Solway J
    J Appl Physiol (1985); 1990 Jul; 69(1):74-85. PubMed ID: 2394665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of parenchymal tethering on the reopening of closed pulmonary airways.
    Yap DY; Liebkemann WD; Solway J; Gaver DP
    J Appl Physiol (1985); 1994 May; 76(5):2095-105. PubMed ID: 8063673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental model investigation of the opening of a collapsed untethered pulmonary airway.
    Perun ML; Gaver DP
    J Biomech Eng; 1995 Aug; 117(3):245-53. PubMed ID: 8618375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary airway reopening: effects of non-Newtonian fluid viscosity.
    Low HT; Chew YT; Zhou CW
    J Biomech Eng; 1997 Aug; 119(3):298-308. PubMed ID: 9285343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
    Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airway reopening pressure in isolated rat lungs.
    Naureckas ET; Dawson CA; Gerber BS; Gaver DP; Gerber HL; Linehan JH; Solway J; Samsel RW
    J Appl Physiol (1985); 1994 Mar; 76(3):1372-7. PubMed ID: 8005884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of surfactant-induced surface tension effects on the parenchymal tethering of pulmonary airways.
    Fujioka H; Halpern D; Gaver DP
    J Biomech; 2013 Jan; 46(2):319-28. PubMed ID: 23235110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface tension and intraluminal fluid on mechanics of small airways.
    Hill MJ; Wilson TA; Lambert RK
    J Appl Physiol (1985); 1997 Jan; 82(1):233-9. PubMed ID: 9029221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.
    Chen ZL; Song YL; Hu ZY; Zhang S; Chen YZ
    J Appl Physiol (1985); 2015 Aug; 119(3):190-201. PubMed ID: 26023222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.
    Tavana H; Zamankhan P; Christensen PJ; Grotberg JB; Takayama S
    Biomed Microdevices; 2011 Aug; 13(4):731-42. PubMed ID: 21487664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unusual symmetric reopening effect induced by pulmonary surfactant.
    Yamaguchi E; Giannetti MJ; Van Houten MJ; Forouzan O; Shevkoplyas SS; Gaver DP
    J Appl Physiol (1985); 2014 Mar; 116(6):635-44. PubMed ID: 24458752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of tethering and gravity on the stability of compliant liquid-lined airways.
    Whang J; Faulman C; Itin TA; Gaver DP
    J Biomech; 2017 Jan; 50():228-233. PubMed ID: 27865481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening.
    Kay SS; Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased surface tension of upper airway mucosal lining liquid increases upper airway patency in anaesthetised rabbits.
    Kirkness JP; Christenson HK; Garlick SR; Parikh R; Kairaitis K; Wheatley JR; Amis TC
    J Physiol; 2003 Mar; 547(Pt 2):603-11. PubMed ID: 12562967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of viscoelasticity in tube model of airway reopening. I. Nonnewtonian sols.
    Hsu SH; Strohl KP; Jamieson AM
    J Appl Physiol (1985); 1994 Jun; 76(6):2481-9. PubMed ID: 7928874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of surfactant on the propagation of a semi-infinite bubble through a liquid-filled compliant channel.
    Halpern D; Gaver DP
    J Fluid Mech; 2012 May; 698():125-159. PubMed ID: 22997476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of liquid-epithelium interactions in pulmonary airways.
    Ghadiali SN; Gaver DP
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):232-43. PubMed ID: 18511356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Airway closure: occluding liquid bridges in strongly buckled elastic tubes.
    Heil M
    J Biomech Eng; 1999 Oct; 121(5):487-93. PubMed ID: 10529915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
    Yalcin HC; Perry SF; Ghadiali SN
    J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.