These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8594045)

  • 1. A model analysis of asymmetrical response of pulmonary VO2 during incremental and decremental ramp exercise.
    Niizeki K; Takahashi T; Miyamoto Y
    J Appl Physiol (1985); 1995 Nov; 79(5):1816-27. PubMed ID: 8594045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of muscle and pulmonary O2 uptakes by circulatory dynamics during exercise.
    Barstow TJ; Lamarra N; Whipp BJ
    J Appl Physiol (1985); 1990 Mar; 68(3):979-89. PubMed ID: 2341363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of ventilation, circulation, and gas exchange to incremental and decremental ramp exercise.
    Miyamoto Y; Niizeki Y
    J Appl Physiol (1985); 1992 Jun; 72(6):2244-54. PubMed ID: 1629079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of oxygen uptake during decremental ramp exercise.
    Yano T; Yunoki T; Horiuchi M
    J Sports Med Phys Fitness; 2000 Mar; 40(1):11-6. PubMed ID: 10822904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen uptake kinetics during incremental- and decremental-ramp cycle ergometry.
    Ozyener F; Rossiter HB; Ward SA; Whipp BJ
    J Sports Sci Med; 2011; 10(3):584-9. PubMed ID: 24150637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing cerebral and locomotor muscle oxygenation to incremental ramp exercise in healthy children: relationship with pulmonary gas exchange.
    Vandekerckhove K; Coomans I; Moerman A; De Wolf D; Boone J
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2345-2355. PubMed ID: 27714456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery.
    Boushel R; Ara I; Gnaiger E; Helge JW; González-Alonso J; Munck-Andersen T; Sondergaard H; Damsgaard R; van Hall G; Saltin B; Calbet JA
    Acta Physiol (Oxf); 2014 May; 211(1):122-34. PubMed ID: 24528535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen uptake kinetics in response to exercise in patients with pulmonary vascular disease.
    Sietsema KE
    Am Rev Respir Dis; 1992 May; 145(5):1052-7. PubMed ID: 1586046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the pulmonary O2 uptake to blood flow ratio (VO2/Q) during and following constant-load exercise.
    Yoshida T; Whipp BJ
    Adv Exp Med Biol; 1995; 393():207-11. PubMed ID: 8629481
    [No Abstract]   [Full Text] [Related]  

  • 10. A validated model of oxygen uptake and circulatory dynamic interactions at exercise onset in humans.
    Benson AP; Grassi B; Rossiter HB
    J Appl Physiol (1985); 2013 Sep; 115(5):743-55. PubMed ID: 23766506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue.
    Day JR; Rossiter HB; Coats EM; Skasick A; Whipp BJ
    J Appl Physiol (1985); 2003 Nov; 95(5):1901-7. PubMed ID: 12857763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas exchange responses to continuous incremental cycle ergometry exercise in primary pulmonary hypertension in humans.
    Riley MS; Pórszász J; Engelen MP; Brundage BH; Wasserman K
    Eur J Appl Physiol; 2000 Sep; 83(1):63-70. PubMed ID: 11072775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency.
    Poole DC; Gaesser GA; Hogan MC; Knight DR; Wagner PD
    J Appl Physiol (1985); 1992 Feb; 72(2):805-10. PubMed ID: 1559962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of pulmonary O2 uptake during exercise transients in humans.
    Barstow TJ; Molé PA
    J Appl Physiol (1985); 1987 Dec; 63(6):2253-61. PubMed ID: 3436861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High muscle blood flow in man: is maximal O2 extraction compromised?
    Richardson RS; Poole DC; Knight DR; Kurdak SS; Hogan MC; Grassi B; Johnson EC; Kendrick KF; Erickson BK; Wagner PD
    J Appl Physiol (1985); 1993 Oct; 75(4):1911-6. PubMed ID: 8282650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects.
    Wasserman K; Stringer WW; Casaburi R; Koike A; Cooper CB
    Z Kardiol; 1994; 83 Suppl 3():1-12. PubMed ID: 7941654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early dynamics of O2 uptake and heart rate as affected by exercise work rate.
    Sietsema KE; Daly JA; Wasserman K
    J Appl Physiol (1985); 1989 Dec; 67(6):2535-41. PubMed ID: 2606862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lung ventilation-perfusion and muscle metabolism-perfusion heterogeneities on maximal O2 transport and utilization.
    Cano I; Roca J; Wagner PD
    J Physiol; 2015 Apr; 593(8):1841-56. PubMed ID: 25640017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic asymmetries of cardiac output transients in response to muscular exercise in man.
    Yoshida T; Whipp BJ
    J Physiol; 1994 Oct; 480 ( Pt 2)(Pt 2):355-9. PubMed ID: 7869250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of muscle metabolic heterogeneity in determining the V̇o2p kinetic response to ramp-incremental exercise.
    Keir DA; Benson AP; Love LK; Robertson TC; Rossiter HB; Kowalchuk JM
    J Appl Physiol (1985); 2016 Mar; 120(5):503-13. PubMed ID: 26679614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.