These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8594325)

  • 1. Transcriptional regulation of repressor synthesis in mycobacteriophage L5.
    Nesbit CE; Levin ME; Donnelly-Wu MK; Hatfull GF
    Mol Microbiol; 1995 Sep; 17(6):1045-56. PubMed ID: 8594325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation and immunity in mycobacteriophage Bxb1.
    Jain S; Hatfull GF
    Mol Microbiol; 2000 Dec; 38(5):971-85. PubMed ID: 11123672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional silencing by the mycobacteriophage L5 repressor.
    Brown KL; Sarkis GJ; Wadsworth C; Hatfull GF
    EMBO J; 1997 Oct; 16(19):5914-21. PubMed ID: 9312049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria.
    Donnelly-Wu MK; Jacobs WR; Hatfull GF
    Mol Microbiol; 1993 Feb; 7(3):407-17. PubMed ID: 8459767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of three cytotoxic early proteins of mycobacteriophage L5 leading to growth inhibition in Mycobacterium smegmatis.
    Rybniker J; Plum G; Robinson N; Small PL; Hartmann P
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2304-2314. PubMed ID: 18667563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome organization and characterization of mycobacteriophage Bxb1.
    Mediavilla J; Jain S; Kriakov J; Ford ME; Duda RL; Jacobs WR; Hendrix RW; Hatfull GF
    Mol Microbiol; 2000 Dec; 38(5):955-70. PubMed ID: 11123671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene.
    Kim AI; Ghosh P; Aaron MA; Bibb LA; Jain S; Hatfull GF
    Mol Microbiol; 2003 Oct; 50(2):463-73. PubMed ID: 14617171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome structure of mycobacteriophage D29: implications for phage evolution.
    Ford ME; Sarkis GJ; Belanger AE; Hendrix RW; Hatfull GF
    J Mol Biol; 1998 May; 279(1):143-64. PubMed ID: 9636706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacteriophage L5 infection of Mycobacterium bovis BCG: implications for phage genetics in the slow-growing mycobacteria.
    Fullner KJ; Hatfull GF
    Mol Microbiol; 1997 Nov; 26(4):755-66. PubMed ID: 9427405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Unusual Phage Repressor Encoded by Mycobacteriophage BPs.
    Villanueva VM; Oldfield LM; Hatfull GF
    PLoS One; 2015; 10(9):e0137187. PubMed ID: 26332854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacteriophage D29 integrase-mediated recombination: specificity of mycobacteriophage integration.
    Peña CE; Stoner J; Hatfull GF
    Gene; 1998 Dec; 225(1-2):143-51. PubMed ID: 9931474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of mycobacteriophage L5 excisionase.
    Lewis JA; Hatfull GF
    Mol Microbiol; 2000 Jan; 35(2):350-60. PubMed ID: 10652095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.
    Dedrick RM; Marinelli LJ; Newton GL; Pogliano K; Pogliano J; Hatfull GF
    Mol Microbiol; 2013 May; 88(3):577-89. PubMed ID: 23560716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112.
    Salmon KA; Freedman O; Ritchings BW; DuBow MS
    Virology; 2000 Jun; 272(1):85-97. PubMed ID: 10873751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico analysis of mycobacteriophage Che12 genome: characterization of genes required to lysogenise Mycobacterium tuberculosis.
    Gomathi NS; Sameer H; Kumar V; Balaji S; Dustackeer VN; Narayanan PR
    Comput Biol Chem; 2007 Apr; 31(2):82-91. PubMed ID: 17379577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria.
    Sarkis GJ; Jacobs WR; Hatfull GF
    Mol Microbiol; 1995 Mar; 15(6):1055-67. PubMed ID: 7623662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and evolutionary patterns of mycobacteriophage D29 and its temperate close relatives.
    Dedrick RM; Mavrich TN; Ng WL; Hatfull GF
    BMC Microbiol; 2017 Dec; 17(1):225. PubMed ID: 29197343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of the promoters of temperate mycobacteriophage L1.
    Chattopadhyay C; Sau S; Mandal NC
    J Biochem Mol Biol; 2003 Nov; 36(6):586-92. PubMed ID: 14659078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transcriptomic analysis of the mycobacteriophage D29 genome reveals the presence of novel stoperator-associated promoters in its right arm.
    Bhawsinghka N; Dutta A; Mukhopadhyay J; Das Gupta SK
    Microbiology (Reading); 2018 Sep; 164(9):1168-1179. PubMed ID: 30024363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection.
    Petrova ZO; Broussard GW; Hatfull GF
    Microbiology (Reading); 2015 Aug; 161(8):1539-1551. PubMed ID: 26066798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.