BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8594541)

  • 1. Interaction of Na+ and Mg2+ ions in acetylcholine receptor channels of frog skeletal muscle changes in character with an increase in agonist concentration.
    Manthey AA
    Pflugers Arch; 1995 Oct; 430(6):894-900. PubMed ID: 8594541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakening of ion-channel interactions of Na+ and Li+ in acetylcholine-receptor channels of frog skeletal muscle with an increase in agonist concentration.
    Manthey AA
    Pflugers Arch; 1998 May; 435(6):818-26. PubMed ID: 9518511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monovalent and divalent cation permeability and block of neuronal nicotinic receptor channels in rat parasympathetic ganglia.
    Nutter TJ; Adams DJ
    J Gen Physiol; 1995 Jun; 105(6):701-23. PubMed ID: 7561740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Electrophysiological and biochemical studies.
    Ikeda SR; Aronstam RS; Daly JW; Aracava Y; Albuquerque EX
    Mol Pharmacol; 1984 Sep; 26(2):293-303. PubMed ID: 6090884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Necessity of divalent cations for recovery from carbachol-induced nicotinic acetylcholine receptor inactivation at snake twitch fibre endplates.
    Hardwick JC; Parsons RL
    Br J Pharmacol; 1993 Oct; 110(2):889-95. PubMed ID: 7694760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.
    Manthey AA
    Pflugers Arch; 2006 Jun; 452(3):349-62. PubMed ID: 16555103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes.
    Fukushima Y; Hagiwara S
    J Physiol; 1985 Jan; 358():255-84. PubMed ID: 2580082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Analysis of single-channel currents.
    Aracava Y; Ikeda SR; Daly JW; Brookes N; Albuquerque EX
    Mol Pharmacol; 1984 Sep; 26(2):304-13. PubMed ID: 6090885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The permeability of the endplate channel to organic cations in frog muscle.
    Dwyer TM; Adams DJ; Hille B
    J Gen Physiol; 1980 May; 75(5):469-92. PubMed ID: 6247422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic ganglion neurones.
    Mathie A; Colquhoun D; Cull-Candy SG
    J Physiol; 1990 Aug; 427():625-55. PubMed ID: 1698982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists.
    Akk G; Auerbach A
    Br J Pharmacol; 1999 Dec; 128(7):1467-76. PubMed ID: 10602325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inward rectification of acetylcholine-elicited currents in rat phaeochromocytoma cells.
    Ifune CK; Steinbach JH
    J Physiol; 1992 Nov; 457():143-65. PubMed ID: 1284310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.
    Hess P; Lansman JB; Tsien RW
    J Gen Physiol; 1986 Sep; 88(3):293-319. PubMed ID: 2428919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nonoxime bispyridinium compound SAD-128 alters the kinetic properties of the nicotinic acetylcholine receptor ion channel: a possible mechanism for antidotal effects.
    Alkondon M; Albuquerque EX
    J Pharmacol Exp Ther; 1989 Sep; 250(3):842-52. PubMed ID: 2476549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate.
    Colquhoun D; Sakmann B
    J Physiol; 1985 Dec; 369():501-57. PubMed ID: 2419552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of the interaction between nicotinic acetylcholine receptor and Na+,K(+)-ATPase in the rat skeletal muscle and the Torpedo electric organ membrane preparation].
    Krivoĭ II; Drabkina TM; Vasil'ev AN; Kravtsova VV; Mandel F
    Ross Fiziol Zh Im I M Sechenova; 2006 Feb; 92(2):191-203. PubMed ID: 16739652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore.
    Almers W; McCleskey EW
    J Physiol; 1984 Aug; 353():585-608. PubMed ID: 6090646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A patch clamp study of the nicotinic acetylcholine receptor of bovine adrenomedullary chromaffin cells in culture.
    Nooney JM; Peters JA; Lambert JJ
    J Physiol; 1992 Sep; 455():503-27. PubMed ID: 1282932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. II. Enhancement of desensitization.
    Souccar C; Varanda WA; Aronstam RS; Daly JW; Albuquerque EX
    Mol Pharmacol; 1984 May; 25(3):395-400. PubMed ID: 6328265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.