These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of solution chemistry on particle characteristics during metal sulfide precipitation. Mokone TP; van Hille RP; Lewis AE J Colloid Interface Sci; 2010 Nov; 351(1):10-8. PubMed ID: 20705300 [TBL] [Abstract][Full Text] [Related]
3. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex]. Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905 [TBL] [Abstract][Full Text] [Related]
4. Co-removal of hexavalent chromium during copper precipitation. Sun J; Huang JC Water Sci Technol; 2002; 46(4-5):413-9. PubMed ID: 12361041 [TBL] [Abstract][Full Text] [Related]
5. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study. Nagpal S; Chuichulcherm S; Livingston A; Peeva L Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550 [TBL] [Abstract][Full Text] [Related]
6. Lactate has the potential to promote hydrogen sulphide formation in the human colon. Marquet P; Duncan SH; Chassard C; Bernalier-Donadille A; Flint HJ FEMS Microbiol Lett; 2009 Oct; 299(2):128-34. PubMed ID: 19732152 [TBL] [Abstract][Full Text] [Related]
7. Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area. Qiu R; Zhao B; Liu J; Huang X; Li Q; Brewer E; Wang S; Shi N J Hazard Mater; 2009 May; 164(2-3):1310-5. PubMed ID: 18977087 [TBL] [Abstract][Full Text] [Related]
8. Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Karnachuk OV; Kurochkina SY; Tuovinen OH Appl Microbiol Biotechnol; 2002 Mar; 58(4):482-6. PubMed ID: 11954795 [TBL] [Abstract][Full Text] [Related]
9. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Kaksonen AH; Franzmann PD; Puhakka JA Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513 [TBL] [Abstract][Full Text] [Related]
13. [Participation of heterotrophic microorganisms in the purification of drainage waters from heavy metal ions]. Ilialetdinov AN; Enker PB; Iakubovskiĭ SE Mikrobiologiia; 1976; 45(6):1092-9. PubMed ID: 1012050 [TBL] [Abstract][Full Text] [Related]
14. [Stages of biofilm formation by sulfate-reducing bacteria]. Asaulenko LH; Purishch LM; Kozlova IP Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221 [TBL] [Abstract][Full Text] [Related]
15. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Alvarez MT; Crespo C; Mattiasson B Chemosphere; 2007 Jan; 66(9):1677-83. PubMed ID: 16979215 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction. Thabet OB; Bouallagui H; Cayol JL; Ollivier B; Fardeau ML; Hamdi M J Hazard Mater; 2009 Aug; 167(1-3):1133-40. PubMed ID: 19272702 [TBL] [Abstract][Full Text] [Related]
18. Degradation of maltose by proliferating cells of Desulfovibrio desulfuricans 2198. Zolotukhina LM; Davydova MN; Krasilnikova EN Biochemistry (Mosc); 1999 Aug; 64(8):952-6. PubMed ID: 10498814 [TBL] [Abstract][Full Text] [Related]
19. [Thiosulfate as an intermediate product of bacterial sulfate reduction]. Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. Velasco A; Ramírez M; Volke-Sepúlveda T; González-Sánchez A; Revah S J Hazard Mater; 2008 Mar; 151(2-3):407-13. PubMed ID: 17640800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]