These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 859457)

  • 21. Microbial sulphate reduction at a low pH.
    Koschorreck M
    FEMS Microbiol Ecol; 2008 Jun; 64(3):329-42. PubMed ID: 18445022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains.
    Cabrera G; Pérez R; Gómez JM; Abalos A; Cantero D
    J Hazard Mater; 2006 Jul; 135(1-3):40-6. PubMed ID: 16386832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.
    Matias PM; Pereira IA; Soares CM; Carrondo MA
    Prog Biophys Mol Biol; 2005 Nov; 89(3):292-329. PubMed ID: 15950057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lead removal through biological sulfate reduction process.
    Hien Hoa TT; Liamleam W; Annachhatre AP
    Bioresour Technol; 2007 Sep; 98(13):2538-48. PubMed ID: 17174088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis.
    Rowan FE; Docherty NG; Coffey JC; O'Connell PR
    Br J Surg; 2009 Feb; 96(2):151-8. PubMed ID: 19160346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron corrosion by novel anaerobic microorganisms.
    Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F
    Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor.
    Bijmans MF; van Helvoort PJ; Dar SA; Dopson M; Lens PN; Buisman CJ
    Water Res; 2009 Feb; 43(3):853-61. PubMed ID: 19059621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Innovative developments in the selective removal and reuse of heavy metals from wastewaters.
    Veeken AH; Rulkens WH
    Water Sci Technol; 2003; 47(10):9-16. PubMed ID: 12862211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion.
    Daumas S; Magot M; Crolet JL
    Res Microbiol; 1993 May; 144(4):327-32. PubMed ID: 8248626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-removal of hexavalent chromium through adsorption during copper precipitation.
    Sun JM; Huang JC
    Water Sci Technol; 2004; 50(8):201-8. PubMed ID: 15566204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments.
    Hutchins CM; Teasdale PR; Lee J; Simpson SL
    Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated bacterial process for the treatment of a spent nickel catalyst.
    Bosio V; Viera M; Donati E
    J Hazard Mater; 2008 Jun; 154(1-3):804-10. PubMed ID: 18079054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal partitioning in a sulfidic canal sediment: metal solubility as a function of pH combined with EDTA extraction in anoxic conditions.
    Maes A; Vanthuyne M; Cauwenberg P; Engels B
    Sci Total Environ; 2003 Aug; 312(1-3):181-93. PubMed ID: 12873410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precipitation of copper using Desulfovibrio sp.
    Panchanadikar VV; Kar RN
    World J Microbiol Biotechnol; 1993 Mar; 9(2):280-1. PubMed ID: 24419965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum.
    Erardi FX; Failla ML; Falkinham JO
    Appl Environ Microbiol; 1987 Aug; 53(8):1951-4. PubMed ID: 3662522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen fixation by sporulating sulphate-reducing bacteria including rumen strains.
    Postgate JR
    J Gen Microbiol; 1970 Sep; 63(1):137-9. PubMed ID: 5500022
    [No Abstract]   [Full Text] [Related]  

  • 39. Nitrogen fixation by sulphate-reducing bacteria.
    Riederer-Henderson MA; Wilson PW
    J Gen Microbiol; 1970 Apr; 61(1):27-31. PubMed ID: 5489063
    [No Abstract]   [Full Text] [Related]  

  • 40. Analytical applications of condensed phosphoric acid-III Iodometric determination of sulphur after reduction of sulphate with sodium hypophosphite and either tin metal or potassium iodide in condensed phosphoric acid.
    Mizoguchi T; Iwahori H; Ishii H
    Talanta; 1980 Jun; 27(6):519-24. PubMed ID: 18962717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.