These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8594944)

  • 1. Suppression of meal size by intestinal nutrients is eliminated by celiac vagal deafferentation.
    Walls EK; Phillips RJ; Wang FB; Holst MC; Powley TL
    Am J Physiol; 1995 Dec; 269(6 Pt 2):R1410-9. PubMed ID: 8594944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of food intake by GI fatty acid infusions: roles of celiac vagal afferents and cholecystokinin.
    Cox JE; Kelm GR; Meller ST; Randich A
    Physiol Behav; 2004 Aug; 82(1):27-33. PubMed ID: 15234586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leptin-induced satiation mediated by abdominal vagal afferents.
    Peters JH; McKay BM; Simasko SM; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Apr; 288(4):R879-84. PubMed ID: 15591156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients.
    Sclafani A; Ackroff K; Schwartz GJ
    Physiol Behav; 2003 Feb; 78(2):285-94. PubMed ID: 12576127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin.
    Moran TH; Baldessarini AR; Salorio CF; Lowery T; Schwartz GJ
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1245-51. PubMed ID: 9140026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective vagal rhizotomies: a new dorsal surgical approach used for intestinal deafferentations.
    Walls EK; Wang FB; Holst MC; Phillips RJ; Voreis JS; Perkins AR; Pollard LE; Powley TL
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1279-88. PubMed ID: 7503320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of celiac and cervical vagal afferents to infusions of lipids in the jejunum or ileum of the rat.
    Randich A; Tyler WJ; Cox JE; Meller ST; Kelm GR; Bharaj SS
    Am J Physiol Regul Integr Comp Physiol; 2000 Jan; 278(1):R34-43. PubMed ID: 10644619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gastric volume detection after selective vagotomies in rats.
    Phillips RJ; Powley TL
    Am J Physiol; 1998 Jun; 274(6):R1626-38. PubMed ID: 9608017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients.
    Yox DP; Stokesberry H; Ritter RC
    Am J Physiol; 1991 Mar; 260(3 Pt 2):R503-8. PubMed ID: 2000999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subdiaphragmatic vagal deafferentation fails to block feeding-suppressive effects of LPS and IL-1 beta in rats.
    Schwartz GJ; Plata-Salamán CR; Langhans W
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R1193-8. PubMed ID: 9321903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capasaicin induced deafferentation enhances the effect of electrical vagal nerve stimulation on food intake and body mass.
    Laskiewicz J; Królczyk G; Zurowski D; Enck P; Thor PJ
    J Physiol Pharmacol; 2004 Mar; 55(1 Pt 2):155-63. PubMed ID: 15082875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subdiaphragmatic vagal deafferentation fails to block the anorectic effect of hydroxycitrate.
    Leonhardt M; Hrupka BJ; Langhans W
    Physiol Behav; 2004 Sep; 82(2-3):263-8. PubMed ID: 15276787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats.
    Laskiewicz J; Królczyk G; Zurowski G; Sobocki J; Matyja A; Thor PJ
    J Physiol Pharmacol; 2003 Dec; 54(4):603-10. PubMed ID: 14726614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vagal and splanchnic afferents are not necessary for the anorexia produced by peripheral IL-1beta, LPS, and MDP.
    Porter MH; Hrupka BJ; Langhans W; Schwartz GJ
    Am J Physiol; 1998 Aug; 275(2):R384-9. PubMed ID: 9688672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut vagal afferent lesions increase meal size but do not block gastric preload-induced feeding suppression.
    Schwartz GJ; Salorio CF; Skoglund C; Moran TH
    Am J Physiol; 1999 Jun; 276(6):R1623-9. PubMed ID: 10362740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed.
    Phillips RJ; Baronowsky EA; Powley TL
    J Comp Neurol; 2003 Jan; 455(2):222-37. PubMed ID: 12454987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncal and hepatic vagotomy reduce suppression of feeding by jejunal lipid infusions.
    Cox JE; Kelm GR; Meller ST; Spraggins DS; Randich A
    Physiol Behav; 2004 Mar; 81(1):29-36. PubMed ID: 15059681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of gastrointestinal vagal afferents in the control of food intake: current prospects.
    Schwartz GJ
    Nutrition; 2000 Oct; 16(10):866-73. PubMed ID: 11054591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duodenal nutrient infusion: effects on feeding in intact and vagotomized rabbits.
    Rezek M; Novin D
    J Nutr; 1976 Jun; 106(6):812-20. PubMed ID: 818348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemotherapy-induced pica and anorexia are reduced by common hepatic branch vagotomy in the rat.
    De Jonghe BC; Horn CC
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R756-65. PubMed ID: 18184757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.