These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8595253)

  • 21. Influence of dialysis membranes on interleukin-1 beta and interleukin-1 receptor antagonist production by peripheral blood mononuclear cells.
    Higuchi T; Kuno T; Takahashi S; Kanmatsuse K
    Artif Organs; 1997 Apr; 21(4):265-71. PubMed ID: 9096797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adherence of neutrophils to hemodialysis membranes: role of complement receptors.
    Cheung AK; Hohnholt M; Gilson J
    Kidney Int; 1991 Dec; 40(6):1123-33. PubMed ID: 1762313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation of beta 2-microglobulin synthesis in lymphocytes after exposure to Cuprophan dialyzer membranes.
    Jahn B; Betz M; Deppisch R; Janssen O; Hänsch GM; Ritz E
    Kidney Int; 1991 Aug; 40(2):285-90. PubMed ID: 1942777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo evaluation of platelet activation by different cellulosic membranes.
    Cases A; Reverter JC; Escolar G; Sanz C; Sorribes J; Ordinas A
    Artif Organs; 1997 Apr; 21(4):330-4. PubMed ID: 9096808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes.
    Chenoweth DE; Cheung AK; Henderson LW
    Kidney Int; 1983 Dec; 24(6):764-9. PubMed ID: 6609269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of contact phase activation by the measurement of the activity of supernatant and membrane surface-adsorbed factor XII (FXII): its relevance as a useful parameter for the in vitro assessment of haemodialysis membranes.
    Matata BM; Courtney JM; Sundaram S; Wark S; Bowry SK; Vienken J; Lowe GD
    J Biomed Mater Res; 1996 May; 31(1):63-70. PubMed ID: 8731150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of blood compatibility of haemodialysis membranes using a miniature flat sheet dialyser.
    Mwaniki DL; Courtney JM; Forbes CD; Paul JP
    East Afr Med J; 1992 Mar; 69(3):149-52. PubMed ID: 1505404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of terminal SC5b-9 complement complexes: a new index of blood-membrane interaction.
    Schaefer RM; Rauterberg EW; Deppisch R; Vienken J
    Miner Electrolyte Metab; 1990; 16(1):73-6. PubMed ID: 2325595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro blood compatibility evaluation of cuprophan and polyacrylonitrile membranes.
    Stefanovic V; Vlahovic P; Kostic S; Mitić-Zlatkovic M
    Nephron; 1998; 79(3):350-1. PubMed ID: 9678440
    [No Abstract]   [Full Text] [Related]  

  • 30. Beta 2-microglobulin removal by synthetic dialysis membranes. Mechanisms and kinetics of the molecule.
    Ronco C; Heifetz A; Fox K; Curtin C; Brendolan A; Gastaldon F; Crepaldi C; Fortunato A; Pietribasi G; Caberlotto A; Brunello A; Milan Manani S; Zanella M; La Greca G
    Int J Artif Organs; 1997 Mar; 20(3):136-43. PubMed ID: 9151148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood-membrane interactions during haemodialysis with cellulose and synthetic membranes.
    Woffindin C; Hoenich NA
    Biomaterials; 1988 Jan; 9(1):53-7. PubMed ID: 3126842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fucose-binding Lotus tetragonolobus lectin binds to human polymorphonuclear leukocytes and induces a chemotactic response.
    VanEpps DE; Tung KS
    J Immunol; 1977 Sep; 119(3):1187-9. PubMed ID: 330752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dialysis membranes inhibit in vitro release of beta-2-microglobulin from human lymphocytes.
    Paczek L; Schaefer RM; Heidland A
    Nephron; 1990; 56(3):267-70. PubMed ID: 2077409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro studies of endotoxin transfer across cellulosic and noncellulosic dialysis membranes. II. Interleukin-1 production.
    Herbelin A; Ureña P; Man NK; Drüeke T; Descamps-Latscha B
    Contrib Nephrol; 1989; 74():79-85. PubMed ID: 2702150
    [No Abstract]   [Full Text] [Related]  

  • 35. Removal of beta 2-microglobulin by adsorption on dialysis membranes.
    Goldman M; Dhaene M; Vanherweghem JL
    Nephrol Dial Transplant; 1987; 2(6):576-7. PubMed ID: 3126461
    [No Abstract]   [Full Text] [Related]  

  • 36. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane.
    Sirolli V; Ballone E; Di Stante S; Amoroso L; Bonomini M
    Int J Artif Organs; 2002 Jun; 25(6):529-37. PubMed ID: 12117292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of human recombinant erythropoietin on dialysis membranes in vitro.
    Mori H; Hiraoka K; Yorifuji R; Iwasaki T; Gomikawa S; Inagaki O; Inoue S; Takamitsu Y; Fujita Y
    Artif Organs; 1994 Oct; 18(10):725-8. PubMed ID: 7832652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymorphonuclear oxygen free radical production and complement activation induced by dialysis membranes as assayed in an experimental model.
    Cappelli G; Lucchi L; Bonucchi D; Cenci AM; Montagnani G; De Palma M; Lusvarghi E
    Blood Purif; 1989; 7(6):293-300. PubMed ID: 2611000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A clinical study on different cellulosic dialysis membranes.
    Falkenhagen D; Bosch T; Brown GS; Schmidt B; Holtz M; Baurmeister U; Gurland H; Klinkmann H
    Nephrol Dial Transplant; 1987; 2(6):537-45. PubMed ID: 3126455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemodialysis membrane biocompatibility: the case of erythropoietin.
    Cheung AK; Hohnholt M; Leypoldt JK; DeSpain M
    Blood Purif; 1991; 9(3):153-63. PubMed ID: 1666293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.