BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8595600)

  • 1. Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans.
    Manavathu M; Gunasekaran S; Porte Q; Manavathu E; Gunasekaran M
    Can J Microbiol; 1996 Jan; 42(1):76-9. PubMed ID: 8595600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of yeast-to-mycelium conversion of Candida albicans by conjugated styryl ketones.
    Manavathu E; Duncan C; Porte Q; Gunasekaran M
    Mycopathologia; 1996; 135(2):79-83. PubMed ID: 9063002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of carbon and nitrogen sources on glutathione catabolic enzymes in Candida albicans during dimorphism.
    Gunasekaran S; Imbayagwo M; McDonald L; Gunasekaran M; Manavathu E
    Mycopathologia; 1995 Aug; 131(2):93-7. PubMed ID: 8532061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione peroxidase, glutathione reductase, glutathione S-transferase, and gamma-glutamyltranspeptidase activities in the human early pregnancy placenta.
    Di Ilio C; Polidoro G; Arduini A; Muccini A; Federici G
    Biochem Med; 1983 Apr; 29(2):143-8. PubMed ID: 6134525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of polar lipids from yeast and mycelial forms of Candida albicans and Candida dubliniensis.
    Mahmoudabadi AZ; Drucker DB
    Mycoses; 2006 Jan; 49(1):18-22. PubMed ID: 16367813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of some Mannich bases of conjugated styryl ketones against Candida albicans.
    Dimmock JR; Kumar P; Manavathu EK; Obedeanu N; Grewal J
    Pharmazie; 1994 Dec; 49(12):909-12. PubMed ID: 7838880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans.
    Gergondey R; Garcia C; Serre V; Camadro JM; Auchère F
    Biochim Biophys Acta; 2016 Jul; 1862(7):1309-23. PubMed ID: 27083931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans.
    Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F
    Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the intracellular content of glutathione and the formation of germ-tubes induced by human serum in Candida albicans.
    González-Párraga P; Marín FR; Argüelles JC; Hernández JA
    Biochim Biophys Acta; 2005 Apr; 1722(3):324-30. PubMed ID: 15777624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes.
    Ku M; Baek YU; Kwak MK; Kang SO
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):772-788. PubMed ID: 27751952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of glutathione metabolizing enzymes in nickel mediated induction of hepatic glutathione.
    Athar M; Hasan SK; Srivastava RC
    Res Commun Chem Pathol Pharmacol; 1987 Sep; 57(3):421-4. PubMed ID: 2890191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol dehydrogenase 1 and NAD(H)-linked methylglyoxal oxidoreductase reciprocally regulate glutathione-dependent enzyme activities in Candida albicans.
    Kang SO; Kwak MK
    J Microbiol; 2021 Jan; 59(1):76-91. PubMed ID: 33355888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione levels during thermal induction of the yeast-to-mycelial transition in Candida albicans.
    Thomas D; Klein K; Manavathu E; Dimmock JR; Mutus B
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):331-4. PubMed ID: 2037237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans.
    Brown LA; Chaffin WL
    Can J Microbiol; 1981 Jun; 27(6):580-5. PubMed ID: 7020895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Azacytidine accelerates yeast-mycelium conversion in Candida albicans.
    Pancaldi S; Del Senno L; Fasulo MP; Poli F; Vannini GL
    Cell Biol Int Rep; 1988 Jan; 12(1):35-40. PubMed ID: 2456156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans.
    Shin Y; Lee S; Ku M; Kwak MK; Kang SO
    Int J Biochem Cell Biol; 2017 Nov; 92():183-201. PubMed ID: 29031807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of diallyldisulphide on an antioxidant enzyme system in Candida species.
    Yousuf S; Ahmad A; Khan A; Manzoor N; Khan LA
    Can J Microbiol; 2010 Oct; 56(10):816-21. PubMed ID: 20962904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted
    Kang SO; Kwak MK
    J Microbiol Biotechnol; 2021 Jan; 31(1):79-91. PubMed ID: 33203822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione protects Candida albicans against horseradish volatile oil.
    Bertóti R; Vasas G; Gonda S; Nguyen NM; Szőke É; Jakab Á; Pócsi I; Emri T
    J Basic Microbiol; 2016 Oct; 56(10):1071-1079. PubMed ID: 27272511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione metabolizing enzyme activities in human thyroid.
    Del Boccio G; Casaccia R; Aceto A; Casalone E; De Remigis P; Di Ilio C
    Gen Pharmacol; 1987; 18(3):315-20. PubMed ID: 2883074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.