These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8595600)
1. Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans. Manavathu M; Gunasekaran S; Porte Q; Manavathu E; Gunasekaran M Can J Microbiol; 1996 Jan; 42(1):76-9. PubMed ID: 8595600 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of yeast-to-mycelium conversion of Candida albicans by conjugated styryl ketones. Manavathu E; Duncan C; Porte Q; Gunasekaran M Mycopathologia; 1996; 135(2):79-83. PubMed ID: 9063002 [TBL] [Abstract][Full Text] [Related]
3. Influence of carbon and nitrogen sources on glutathione catabolic enzymes in Candida albicans during dimorphism. Gunasekaran S; Imbayagwo M; McDonald L; Gunasekaran M; Manavathu E Mycopathologia; 1995 Aug; 131(2):93-7. PubMed ID: 8532061 [TBL] [Abstract][Full Text] [Related]
4. Glutathione peroxidase, glutathione reductase, glutathione S-transferase, and gamma-glutamyltranspeptidase activities in the human early pregnancy placenta. Di Ilio C; Polidoro G; Arduini A; Muccini A; Federici G Biochem Med; 1983 Apr; 29(2):143-8. PubMed ID: 6134525 [TBL] [Abstract][Full Text] [Related]
5. Comparison of polar lipids from yeast and mycelial forms of Candida albicans and Candida dubliniensis. Mahmoudabadi AZ; Drucker DB Mycoses; 2006 Jan; 49(1):18-22. PubMed ID: 16367813 [TBL] [Abstract][Full Text] [Related]
6. Activity of some Mannich bases of conjugated styryl ketones against Candida albicans. Dimmock JR; Kumar P; Manavathu EK; Obedeanu N; Grewal J Pharmazie; 1994 Dec; 49(12):909-12. PubMed ID: 7838880 [TBL] [Abstract][Full Text] [Related]
7. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans. Gergondey R; Garcia C; Serre V; Camadro JM; Auchère F Biochim Biophys Acta; 2016 Jul; 1862(7):1309-23. PubMed ID: 27083931 [TBL] [Abstract][Full Text] [Related]
8. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088 [TBL] [Abstract][Full Text] [Related]
9. Correlation between the intracellular content of glutathione and the formation of germ-tubes induced by human serum in Candida albicans. González-Párraga P; Marín FR; Argüelles JC; Hernández JA Biochim Biophys Acta; 2005 Apr; 1722(3):324-30. PubMed ID: 15777624 [TBL] [Abstract][Full Text] [Related]
10. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Ku M; Baek YU; Kwak MK; Kang SO Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):772-788. PubMed ID: 27751952 [TBL] [Abstract][Full Text] [Related]
11. Role of glutathione metabolizing enzymes in nickel mediated induction of hepatic glutathione. Athar M; Hasan SK; Srivastava RC Res Commun Chem Pathol Pharmacol; 1987 Sep; 57(3):421-4. PubMed ID: 2890191 [TBL] [Abstract][Full Text] [Related]
13. Glutathione levels during thermal induction of the yeast-to-mycelial transition in Candida albicans. Thomas D; Klein K; Manavathu E; Dimmock JR; Mutus B FEMS Microbiol Lett; 1991 Jan; 61(2-3):331-4. PubMed ID: 2037237 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans. Brown LA; Chaffin WL Can J Microbiol; 1981 Jun; 27(6):580-5. PubMed ID: 7020895 [TBL] [Abstract][Full Text] [Related]
15. Reactivity of γ-glutamyl-cysteine with intracellular and extracellular glutathione metabolic enzymes. Muraoka M; Yoshida S; Ohno M; Matsuura H; Nagano K; Hirata Y; Arai M; Hirata K FEBS Lett; 2022 Jan; 596(2):180-188. PubMed ID: 34923639 [TBL] [Abstract][Full Text] [Related]
16. 5-Azacytidine accelerates yeast-mycelium conversion in Candida albicans. Pancaldi S; Del Senno L; Fasulo MP; Poli F; Vannini GL Cell Biol Int Rep; 1988 Jan; 12(1):35-40. PubMed ID: 2456156 [TBL] [Abstract][Full Text] [Related]
17. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans. Shin Y; Lee S; Ku M; Kwak MK; Kang SO Int J Biochem Cell Biol; 2017 Nov; 92():183-201. PubMed ID: 29031807 [TBL] [Abstract][Full Text] [Related]
18. Effect of diallyldisulphide on an antioxidant enzyme system in Candida species. Yousuf S; Ahmad A; Khan A; Manzoor N; Khan LA Can J Microbiol; 2010 Oct; 56(10):816-21. PubMed ID: 20962904 [TBL] [Abstract][Full Text] [Related]
19. Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Kang SO; Kwak MK J Microbiol Biotechnol; 2021 Jan; 31(1):79-91. PubMed ID: 33203822 [TBL] [Abstract][Full Text] [Related]