BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 8595651)

  • 1. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae).
    Chambers A; Packham EA; Graham IR
    Curr Genet; 1995 Dec; 29(1):1-9. PubMed ID: 8595651
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The E-box DNA binding protein Sgc1p suppresses the gcr2 mutation, which is involved in transcriptional activation of glycolytic genes in Saccharomyces cerevisiae.
    Sato T; Lopez MC; Sugioka S; Jigami Y; Baker HV; Uemura H
    FEBS Lett; 1999 Dec; 463(3):307-11. PubMed ID: 10606743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose metabolism in gcr mutants of Saccharomyces cerevisiae.
    Uemura H; Fraenkel DG
    J Bacteriol; 1999 Aug; 181(15):4719-23. PubMed ID: 10419980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human gene, hSGT1, can substitute for GCR2, which encodes a general regulatory factor of glycolytic gene expression in Saccharomyces cerevisiae.
    Sato T; Jigami Y; Suzuki T; Uemura H
    Mol Gen Genet; 1999 Jan; 260(6):535-40. PubMed ID: 9928932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein.
    Nishi K; Park CS; Pepper AE; Eichinger G; Innis MA; Holland MJ
    Mol Cell Biol; 1995 May; 15(5):2646-53. PubMed ID: 7739544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae.
    Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M
    Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolysis controls plasma membrane glucose sensors to promote glucose signaling in yeasts.
    Cairey-Remonnay A; Deffaud J; Wésolowski-Louvel M; Lemaire M; Soulard A
    Mol Cell Biol; 2015 Feb; 35(4):747-57. PubMed ID: 25512610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J; Trumbly RJ
    Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of GCR2 in transcriptional activation of yeast glycolytic genes.
    Uemura H; Jigami Y
    Mol Cell Biol; 1992 Sep; 12(9):3834-42. PubMed ID: 1508187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in GCR1 affect SUC2 gene expression in Saccharomyces cerevisiae.
    Türkel S; Turgut T; López MC; Uemura H; Baker HV
    Mol Genet Genomics; 2003 Mar; 268(6):825-31. PubMed ID: 12655409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of GCR1, the transcriptional activator of glycolytic enzyme genes in the yeast Saccharomyces cerevisiae, is positively autoregulated by Gcr1p.
    Sasaki H; Kishimoto T; Mizuno T; Shinzato T; Uemura H
    Yeast; 2005 Mar; 22(4):305-19. PubMed ID: 15789351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase.
    Estruch F; Carlson M
    Nucleic Acids Res; 1990 Dec; 18(23):6959-64. PubMed ID: 2263457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug resistance: the fight against fungi.
    Goffeau A
    Nature; 2008 Apr; 452(7187):541-2. PubMed ID: 18385723
    [No Abstract]   [Full Text] [Related]  

  • 16. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.
    Watanabe D; Hashimoto N; Mizuno M; Zhou Y; Akao T; Shimoi H
    Biosci Biotechnol Biochem; 2013; 77(11):2255-62. PubMed ID: 24200791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 'natural' mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1).
    Gaisne M; Bécam AM; Verdière J; Herbert CJ
    Curr Genet; 1999 Oct; 36(4):195-200. PubMed ID: 10541856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-binding properties of the yeast Rgt1 repressor.
    Kim JH
    Biochimie; 2009 Feb; 91(2):300-3. PubMed ID: 18950675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.
    Ahn J; Park KM; Lee H; Son YJ; Choi ES
    FEMS Yeast Res; 2013 Feb; 13(1):140-2. PubMed ID: 23131005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.