These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Maintenance of opsin density in photoreceptor outer segments of retinoid-deprived rats. Katz ML; Kutryb MJ; Norberg M; Gao CL; White RH; Stark WS Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):1968-80. PubMed ID: 2055691 [TBL] [Abstract][Full Text] [Related]
4. Reduced phagosomal content of the retinal pigment epithelium in response to retinoid deprivation. Katz ML; Norberg M; Stientjes HJ Invest Ophthalmol Vis Sci; 1992 Aug; 33(9):2612-8. PubMed ID: 1639608 [TBL] [Abstract][Full Text] [Related]
5. Iron-induced fluorescence in the retina: dependence on vitamin A. Katz ML; Christianson JS; Gao CL; Handelman GJ Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3613-24. PubMed ID: 8088951 [TBL] [Abstract][Full Text] [Related]
6. Regulation of the interphotoreceptor retinoid-binding protein content of the retina by vitamin A. Katz ML; Gao CL; Stientjes HJ Exp Eye Res; 1993 Oct; 57(4):393-401. PubMed ID: 8282025 [TBL] [Abstract][Full Text] [Related]
7. Recovery of photoreceptor outer segment length and analysis of membrane assembly rates in regenerating primate photoreceptor outer segments. Guérin CJ; Lewis GP; Fisher SK; Anderson DH Invest Ophthalmol Vis Sci; 1993 Jan; 34(1):175-83. PubMed ID: 8425823 [TBL] [Abstract][Full Text] [Related]
8. Cycloheptatrienylidene analog of 11-cis retinal. Formation of pigment in photoreceptor membranes. Crouch R; Nodes BR; Perlman JI; Pepperberg DR; Akita H; Nakanishi K Invest Ophthalmol Vis Sci; 1984 Apr; 25(4):419-28. PubMed ID: 6231263 [TBL] [Abstract][Full Text] [Related]
9. Retinal reattachment of the primate macula. Photoreceptor recovery after short-term detachment. Guérin CJ; Anderson DH; Fariss RN; Fisher SK Invest Ophthalmol Vis Sci; 1989 Aug; 30(8):1708-25. PubMed ID: 2527212 [TBL] [Abstract][Full Text] [Related]
10. Influence of UVA light stress on photoreceptor cell metabolism: decreased rates of rhodopsin regeneration and opsin synthesis. Rapp LM; Ghalayini AJ Exp Eye Res; 1999 Jun; 68(6):757-64. PubMed ID: 10375439 [TBL] [Abstract][Full Text] [Related]
11. Photoreceptor outer segment development in Xenopus laevis: influence of the pigment epithelium. Stiemke MM; Landers RA; al-Ubaidi MR; Rayborn ME; Hollyfield JG Dev Biol; 1994 Mar; 162(1):169-80. PubMed ID: 8125184 [TBL] [Abstract][Full Text] [Related]
12. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Organisciak DT; Darrow RM; Jiang YL; Blanks JC Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911 [TBL] [Abstract][Full Text] [Related]
13. P23H and S334ter opsin mutations: Increasing photoreceptor outer segment n-3 fatty acid content does not affect the course of retinal degeneration. Martin RE; Ranchon-Cole I; Brush RS; Williamson CR; Hopkins SA; Li F; Anderson RE Mol Vis; 2004 Mar; 10():199-207. PubMed ID: 15064683 [TBL] [Abstract][Full Text] [Related]
14. Interphotoreceptor retinoid-binding protein (IRBP) promotes the release of all-trans retinol from the isolated retina following rhodopsin bleaching illumination. Qtaishat NM; Wiggert B; Pepperberg DR Exp Eye Res; 2005 Oct; 81(4):455-63. PubMed ID: 15935345 [TBL] [Abstract][Full Text] [Related]
15. Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas. Caldwell RB; McLaughlin BJ J Comp Neurol; 1985 Jun; 236(4):523-37. PubMed ID: 4056101 [TBL] [Abstract][Full Text] [Related]
16. Retinal light damage reduces autofluorescent pigment deposition in the retinal pigment epithelium. Katz ML; Eldred GE Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):37-43. PubMed ID: 2912913 [TBL] [Abstract][Full Text] [Related]
17. Opsin maturation and targeting to rhabdomeral photoreceptor membranes requires the retinal chromophore. Huber A; Wolfrum U; Paulsen R Eur J Cell Biol; 1994 Apr; 63(2):219-29. PubMed ID: 8082646 [TBL] [Abstract][Full Text] [Related]
18. Recombination reaction of rhodopsin in situ studied by photoconversion of "indicator yellow". Kolesnikov AV; Shukolyukov SA; Cornwall MC; Govardovskii VI Vision Res; 2006 May; 46(10):1665-75. PubMed ID: 16153675 [TBL] [Abstract][Full Text] [Related]
19. Control of Drosophila retinoid and fatty acid binding glycoprotein expression by retinoids and retinoic acid: northern, western and immunocytochemical analyses. Shim K; Picking WL; Kutty RK; Thomas CF; Wiggert BN; Stark WS Exp Eye Res; 1997 Nov; 65(5):717-27. PubMed ID: 9367652 [TBL] [Abstract][Full Text] [Related]
20. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Chen P; Hao W; Rife L; Wang XP; Shen D; Chen J; Ogden T; Van Boemel GB; Wu L; Yang M; Fong HK Nat Genet; 2001 Jul; 28(3):256-60. PubMed ID: 11431696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]