BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8595865)

  • 21. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113.
    Barret M; Egan F; Moynihan J; Morrissey JP; Lesouhaitier O; O'Gara F
    Environ Microbiol Rep; 2013 Jun; 5(3):377-86. PubMed ID: 23754718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere.
    Godino A; Príncipe A; Fischer S
    Res Microbiol; 2016 Apr; 167(3):178-89. PubMed ID: 26708985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20.
    Heinaru E; Vedler E; Jutkina J; Aava M; Heinaru A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):563-74. PubMed ID: 19744238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Boot colonization of wheat by lux-AB genes marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Apr; 40(2):150-4. PubMed ID: 12548937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency.
    Von Felten A; Défago G; Maurhofer M
    J Microbiol Methods; 2010 May; 81(2):108-15. PubMed ID: 20153383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces.
    Gal M; Preston GM; Massey RC; Spiers AJ; Rainey PB
    Mol Ecol; 2003 Nov; 12(11):3109-21. PubMed ID: 14629390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots.
    Marchi M; Boutin M; Gazengel K; Rispe C; Gauthier JP; Guillerm-Erckelboudt AY; Lebreton L; Barret M; Daval S; Sarniguet A
    Environ Microbiol Rep; 2013 Jun; 5(3):393-403. PubMed ID: 23754720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field.
    Jäderlund L; Hellman M; Sundh I; Bailey MJ; Jansson JK
    FEMS Microbiol Ecol; 2008 Feb; 63(2):156-68. PubMed ID: 18093144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survival of a lacZY-marked strain of Pseudomonas corrugata following a field release.
    Choi HY; Ryder MH; Gillings MR; Stokes HW; Ophel-Keller KM; Veal DA
    FEMS Microbiol Ecol; 2003 Apr; 43(3):367-74. PubMed ID: 19719668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains.
    Hoang TT; Kutchma AJ; Becher A; Schweizer HP
    Plasmid; 2000 Jan; 43(1):59-72. PubMed ID: 10610820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pTIM3, a plasmid delivery vector for a transposon-based inducible marker gene system in gram-negative bacteria.
    Saint CP; Alexander S; McClure NC
    Plasmid; 1995 Nov; 34(3):165-74. PubMed ID: 8825369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic manipulation of Prochlorococcus strain MIT9313: green fluorescent protein expression from an RSF1010 plasmid and Tn5 transposition.
    Tolonen AC; Liszt GB; Hess WR
    Appl Environ Microbiol; 2006 Dec; 72(12):7607-13. PubMed ID: 17041154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Introduction of the chromogenic gene to the plant growth-promoting rhizobacteria of cucumber].
    Chen X; Zhang B; Lou B; Ryder MH
    Wei Sheng Wu Xue Bao; 2001 Jun; 41(3):287-92. PubMed ID: 12549081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle.
    Léon-Kloosterziel KM; Verhagen BW; Keurentjes JJ; VanPelt JA; Rep M; VanLoon LC; Pieterse CM
    Plant Mol Biol; 2005 Mar; 57(5):731-48. PubMed ID: 15988566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic studies of a thermoregulated gene in the psychrotrophic bacterium Pseudomonas fluorescens.
    Regeard C; Mérieau A; Leriche F; Guespin-Michel JF
    Res Microbiol; 1999 Sep; 150(7):447-56. PubMed ID: 10540908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification and modeling of plasmid mobilization on seeds and roots.
    Sudarshana P; Knudsen GR
    Curr Microbiol; 2006 Jun; 52(6):455-9. PubMed ID: 16732455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene.
    Monti MR; Smania AM; Fabro G; Alvarez ME; Argaraña CE
    Appl Environ Microbiol; 2005 Dec; 71(12):8864-72. PubMed ID: 16332883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.
    Mavrodi OV; Mavrodi DV; Weller DM; Thomashow LS
    Appl Environ Microbiol; 2006 Nov; 72(11):7111-22. PubMed ID: 16936061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.