BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 8595879)

  • 1. Mammalian RAFT1 kinase domain provides rapamycin-sensitive TOR function in yeast.
    Alarcon CM; Cardenas ME; Heitman J
    Genes Dev; 1996 Feb; 10(3):279-88. PubMed ID: 8595879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast.
    Alarcon CM; Heitman J; Cardenas ME
    Mol Biol Cell; 1999 Aug; 10(8):2531-46. PubMed ID: 10436010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin.
    Lorenz MC; Heitman J
    J Biol Chem; 1995 Nov; 270(46):27531-7. PubMed ID: 7499212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs.
    Sabatini DM; Erdjument-Bromage H; Lui M; Tempst P; Snyder SH
    Cell; 1994 Jul; 78(1):35-43. PubMed ID: 7518356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast.
    Helliwell SB; Wagner P; Kunz J; Deuter-Reinhard M; Henriquez R; Hall MN
    Mol Biol Cell; 1994 Jan; 5(1):105-18. PubMed ID: 8186460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity.
    Cardenas ME; Heitman J
    EMBO J; 1995 Dec; 14(23):5892-907. PubMed ID: 8846782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin.
    Zheng XF; Florentino D; Chen J; Crabtree GR; Schreiber SL
    Cell; 1995 Jul; 82(1):121-30. PubMed ID: 7606777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue.
    Stan R; McLaughlin MM; Cafferkey R; Johnson RK; Rosenberg M; Livi GP
    J Biol Chem; 1994 Dec; 269(51):32027-30. PubMed ID: 7528205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Missense mutations at the FKBP12-rapamycin-binding site of TOR1.
    Freeman K; Livi GP
    Gene; 1996 Jun; 172(1):143-7. PubMed ID: 8654975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine.
    Weisman R; Choder M
    J Biol Chem; 2001 Mar; 276(10):7027-32. PubMed ID: 11096119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rapamycin and FKBP12 target (RAFT) displays phosphatidylinositol 4-kinase activity.
    Sabatini DM; Pierchala BA; Barrow RK; Schell MJ; Snyder SH
    J Biol Chem; 1995 Sep; 270(36):20875-8. PubMed ID: 7673106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells.
    Sabers CJ; Martin MM; Brunn GJ; Williams JM; Dumont FJ; Wiederrecht G; Abraham RT
    J Biol Chem; 1995 Jan; 270(2):815-22. PubMed ID: 7822316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression.
    Kunz J; Henriquez R; Schneider U; Deuter-Reinhard M; Movva NR; Hall MN
    Cell; 1993 May; 73(3):585-96. PubMed ID: 8387896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FAP1, a homologue of human transcription factor NF-X1, competes with rapamycin for binding to FKBP12 in yeast.
    Kunz J; Loeschmann A; Deuter-Reinhard M; Hall MN
    Mol Microbiol; 2000 Sep; 37(6):1480-93. PubMed ID: 10998178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity.
    Cafferkey R; Young PR; McLaughlin MM; Bergsma DJ; Koltin Y; Sathe GM; Faucette L; Eng WK; Johnson RK; Livi GP
    Mol Cell Biol; 1993 Oct; 13(10):6012-23. PubMed ID: 8413204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mammalian protein targeted by G1-arresting rapamycin-receptor complex.
    Brown EJ; Albers MW; Shin TB; Ichikawa K; Keith CT; Lane WS; Schreiber SL
    Nature; 1994 Jun; 369(6483):756-8. PubMed ID: 8008069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control.
    Loewith R; Jacinto E; Wullschleger S; Lorberg A; Crespo JL; Bonenfant D; Oppliger W; Jenoe P; Hall MN
    Mol Cell; 2002 Sep; 10(3):457-68. PubMed ID: 12408816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fission yeast TOR proteins and the rapamycin response: an unexpected tale.
    Weisman R
    Curr Top Microbiol Immunol; 2004; 279():85-95. PubMed ID: 14560953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOR controls translation initiation and early G1 progression in yeast.
    Barbet NC; Schneider U; Helliwell SB; Stansfield I; Tuite MF; Hall MN
    Mol Biol Cell; 1996 Jan; 7(1):25-42. PubMed ID: 8741837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1.
    Burnett PE; Barrow RK; Cohen NA; Snyder SH; Sabatini DM
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1432-7. PubMed ID: 9465032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.