BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8595967)

  • 1. Neural nitric oxide mediates Edinger-Westphal nucleus evoked increase in choroidal blood flow in the pigeon.
    Zagvazdin YS; Fitzgerald ME; Sancesario G; Reiner A
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):666-72. PubMed ID: 8595967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical and functional evidence for progressive age-related decline in parasympathetic control of choroidal blood flow in pigeons.
    Fitzgerald ME; Tolley E; Jackson B; Zagvazdin YS; Cuthbertson SL; Hodos W; Reiner A
    Exp Eye Res; 2005 Oct; 81(4):478-91. PubMed ID: 15935343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of nitric oxide in maintenance of basal anterior choroidal blood flow in rats.
    Koss MC
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):559-64. PubMed ID: 9501867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of muscarinic cholinergic transmission in Edinger-Westphal nucleus-induced choroidal vasodilation in pigeon.
    Zagvazdin Y; Fitzgerald ME; Reiner A
    Exp Eye Res; 2000 Mar; 70(3):315-27. PubMed ID: 10712818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choroidal blood flow compensation in rats for arterial blood pressure decreases is neuronal nitric oxide-dependent but compensation for arterial blood pressure increases is not.
    Reiner A; Li C; Del Mar N; Fitzgerald ME
    Exp Eye Res; 2010 Jun; 90(6):734-41. PubMed ID: 20302861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and choroidal blood flow regulation.
    Mann RM; Riva CE; Stone RA; Barnes GE; Cranstoun SD
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):925-30. PubMed ID: 7706041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The significance of nitric oxide for parasympathetic vasodilation in the eye and other orbital tissues in the cat.
    Nilsson SF
    Exp Eye Res; 2000 Jan; 70(1):61-72. PubMed ID: 10644421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide regulation of lingual blood flow in the rat.
    Roberts ZV; Koss MC
    Nitric Oxide; 2001 Jun; 5(3):271-7. PubMed ID: 11384200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study.
    Fitzgerald ME; Gamlin PD; Zagvazdin Y; Reiner A
    Vis Neurosci; 1996; 13(4):655-69. PubMed ID: 8870223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the superior salivatory nucleus in parasympathetic control of choroidal blood flow and in maintenance of retinal health.
    Li C; Fitzgerald MEC; Del Mar N; Wang H; Haughey C; Honig MG; Reiner A
    Exp Eye Res; 2021 May; 206():108541. PubMed ID: 33736985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of NO in the control of choroidal blood flow during a decrease in ocular perfusion pressure.
    Simader C; Lung S; Weigert G; Kolodjaschna J; Fuchsjäger-Mayrl G; Schmetterer L; Polska E
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):372-7. PubMed ID: 19124845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitric oxide synthesis inhibition on post-occlusive choroidal blood flow in rats.
    Koss MC
    J Ocul Pharmacol Ther; 2000 Feb; 16(1):55-64. PubMed ID: 10673132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of choroidal blood flow by the nucleus of Edinger-Westphal in pigeons: a laser Doppler study.
    Fitzgerald ME; Vana BA; Reiner A
    Invest Ophthalmol Vis Sci; 1990 Dec; 31(12):2483-92. PubMed ID: 2265988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflex choroidal blood flow responses of the eyeball following somatic sensory stimulation in rats.
    Shimura M; Uchida S; Suzuki A; Nakajima K; Aikawa Y
    Auton Neurosci; 2002 Apr; 97(1):35-41. PubMed ID: 12036184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preganglionic endings from nucleus of Edinger-Westphal in pigeon ciliary ganglion contain neuronal nitric oxide synthase.
    Cuthbertson S; Zagvazdin YS; Kimble TD; Lamoreaux WJ; Jackson BS; Fitzgerald ME; Reiner A
    Vis Neurosci; 1999; 16(5):819-34. PubMed ID: 10580718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nitric oxide synthase inhibitor on optic nerve head circulation in conscious rabbits.
    Sugiyama T; Oku H; Ikari S; Ikeda T
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1149-52. PubMed ID: 10752953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit.
    Nilsson SF
    Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):2110-9. PubMed ID: 8814150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of nitric oxide in the modulation of dural arterial blood flow in the rat.
    Messlinger K; Suzuki A; Pawlak M; Zehnter A; Schmidt RF
    Br J Pharmacol; 2000 Apr; 129(7):1397-404. PubMed ID: 10742295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nitric oxide synthase inhibition on blood flow after retinal ischemia in cats.
    Ostwald P; Goldstein IM; Pachnanda A; Roth S
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2396-403. PubMed ID: 7591629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of neuronal nitric oxide synthase in response to hypertonic saline loading in rats.
    Wangensteen R; Rodríguez-Gomez I; Moreno JM; Chamorro V; Osuna A; Vargas F
    Acta Physiol Scand; 2004 Dec; 182(4):389-95. PubMed ID: 15569100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.