These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 859644)
1. Irreversible binding of 3-14C-antipyrine to hepatic protein in vivo and in metabolizing liver microsomes. Tabarelli-Poplawski S; Uehleke H Naunyn Schmiedebergs Arch Pharmacol; 1977 Mar; 297(1):105-10. PubMed ID: 859644 [TBL] [Abstract][Full Text] [Related]
2. Irreversible binding of 14C-labelled trichloroethylene to mice liver constituents in vivo and in vitro. Uehleke H; Poplawski-Tabarelli S Arch Toxicol; 1977 Aug; 37(4):289-94. PubMed ID: 578705 [TBL] [Abstract][Full Text] [Related]
3. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo. Uehleke H; Werner T Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152 [TBL] [Abstract][Full Text] [Related]
4. In vivo and in vitro studies of the hepatotoxic effects of 4-chlorophenol in mice. Phornchirasilp S; DeSouza JJ; Feller DR Biochem Pharmacol; 1989 Mar; 38(6):961-72. PubMed ID: 2930597 [TBL] [Abstract][Full Text] [Related]
5. Effect of phenobarbital and spironolactone treatment on the oxidative metabolism of antipyrine by rat liver microsomes. Szakács T; Veres Z; Vereczkey L Pol J Pharmacol; 2001; 53(1):11-9. PubMed ID: 11785906 [TBL] [Abstract][Full Text] [Related]
6. Irreversible binding and metabolism of propranolol by human liver microsomes--relationship to polymorphic oxidation. Shaw L; Lennard MS; Tucker GT; Bax ND; Woods HF Biochem Pharmacol; 1987 Jul; 36(14):2283-8. PubMed ID: 3111480 [TBL] [Abstract][Full Text] [Related]
7. Comparison of rate of hepatic metabolism in vitro and half-life for antipyrine in vivo in three species. McManus ME; Ilett KF Xenobiotica; 1979 Feb; 9(2):107-18. PubMed ID: 433309 [TBL] [Abstract][Full Text] [Related]
8. Practolol metabolism. III. Irreversible binding of [14C]practolol metabolite(s) to mammalian liver microsomes. Orton TC; Lowery C J Pharmacol Exp Ther; 1981 Oct; 219(1):207-12. PubMed ID: 6793710 [TBL] [Abstract][Full Text] [Related]
9. Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference. Woolf TF; Pool WF; Bjorge SM; Chang T; Goel OP; Purchase CF; Schroeder MC; Kunze KL; Trager WF Drug Metab Dispos; 1993; 21(5):874-82. PubMed ID: 7902251 [TBL] [Abstract][Full Text] [Related]
10. Microsomal metabolism of antipyrine in rats treated with antineoplastic drugs. Slørdal L; Høyem-Johansen T; Aarbakke J Pharmacology; 1983; 26(2):95-9. PubMed ID: 6844394 [TBL] [Abstract][Full Text] [Related]
11. Aminopyrine metabolism by multiple forms of cytochrome P-450 from rat liver microsomes: simultaneous quantitation of four aminopyrine metabolites by high-performance liquid chromatography. Imaoka S; Inoue K; Funae Y Arch Biochem Biophys; 1988 Aug; 265(1):159-70. PubMed ID: 3415241 [TBL] [Abstract][Full Text] [Related]
12. [Sexual variations in the metabolism of antipyrine in vivo and in vitro]. Salvá P; Salvá JA; Laporte J Arch Farmacol Toxicol; 1978 Apr; 4(1):116-9. PubMed ID: 697376 [No Abstract] [Full Text] [Related]
13. Direct measurement of aminopyrine N-demethylase and antipyrine hydroxylase activities in a monolayer rat primary isolated hepatocyte system. Kotake AN Biochem Pharmacol; 1981 Sep; 30(17):2473-9. PubMed ID: 21043248 [TBL] [Abstract][Full Text] [Related]
14. Relationship between metabolic clearance rate of antipyrine and hepatic microsomal drug-oxidizing enzyme activities in humans without liver disease. Vuitton D; Miguet JP; Camelot G; Delafin C; Joanne C; Bechtel P; Gillet M; Carayon P Gastroenterology; 1981 Jan; 80(1):112-8. PubMed ID: 7450397 [TBL] [Abstract][Full Text] [Related]
15. Irreversible binding of 14C-diphenyl ether-derived radioactivity to liver microsomes in vitro and tissue proteins in vivo. Law FC; Chakrabarti S Drug Chem Toxicol; 1983; 6(3):285-94. PubMed ID: 6628261 [TBL] [Abstract][Full Text] [Related]
16. Microsomal metabolism of cyclohexene. Hydroxylation in the allylic position. Leibman KC; Ortiz E Drug Metab Dispos; 1978; 6(4):375-8. PubMed ID: 28916 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the in vivo and in vitro rates of formation of the three main oxidative metabolites of antipyrine in man. Boobis AR; Brodie MJ; Kahn GC; Toverud EL; Blair IA; Murray S; Davies DS Br J Clin Pharmacol; 1981 Dec; 12(6):771-7. PubMed ID: 7340879 [TBL] [Abstract][Full Text] [Related]
18. Bioactivation of 8-methoxypsoralen and irreversible inactivation of cytochrome P-450 in mouse liver microsomes: modification by monoclonal antibodies, inhibition of drug metabolism and distribution of covalent adducts. Mays DC; Hilliard JB; Wong DD; Chambers MA; Park SS; Gelboin HV; Gerber N J Pharmacol Exp Ther; 1990 Aug; 254(2):720-31. PubMed ID: 2117068 [TBL] [Abstract][Full Text] [Related]
19. Comparative studies on hepatic N- and O-demethylation. Otsuji H; Imamura T; Ikeda M Jpn J Pharmacol; 1972 Aug; 22(4):561-70. PubMed ID: 4539508 [No Abstract] [Full Text] [Related]
20. Studies on 5,5-diphenylhydantoin irreversible binding to rat liver microsomal proteins. Pantarotto C; Arboix M; Sezzano P; Abbruzzi R Biochem Pharmacol; 1982 Apr; 31(8):1501-7. PubMed ID: 7092941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]